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Abstract

We propose multiresolution filter bank techniques to construct rotationally invariant moments. The multiresolution pyramid
motivates a simple but efficient feature selection procedure based on a combination of a pruning algorithm, a new version of the
Apriori mining techniques and partially supervised fuzzy C-mean clustering. The recognition accuracy of the proposed techniques
has been tested with the reference to conventional methods. The numerical experiments, with more than 50,000 images, demonstrate
an accuracy increase ranging from 5% to 27% depending on the noise level.
© 2009 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

A popular class of the rotationally invariant features is based on the moment techniques which are believed to
be reliable for complex shapes because they involve not solely the contour pixels but all the pixels constituting the
object. In 1962 Hu [12] published the first paper on the use of the image moments based on nonlinear combinations of
central geometric moments invariant under translation and rotation (see also [17]). The Hu’s technique has been used in
many applications. However, a dramatic increase in complexity when increasing the order often makes Hu’s moments
impractical. Shortly after Hu’s paper, a variety of rotationally invariant moments has been proposed and analyzed
[5,6,15,16,21,20,22,27,29]. The main idea of such moments is based on a spatial-frequency domain representation.
First, a circular Fourier transform (the Fourier transform with regard to the angular coordinate) is applied inside a
circle occluding the object. The result is a complex function of two real variables, the frequency and the radial variable.
Next, the function is sampled with regard to the frequency variable at integer frequencies. The magnitude of every
sample is rotationally invariant. Next, the samples, which are functions of the radial variable, are represented in terms
of an appropriate functional basis. The coefficients of the Fourier series in this basis constitute the required moments.
In this paper we will call these moments “coefficients” (“details” and “approximations”) and “features” depending on
the context. The moments are complex numbers, the magnitude of which is invariant with regard to the rotations of
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the object. Note that often it is not necessary to exactly separate the object from the background. It is sufficient to only
find the occluding circle since the above procedure treats each pixel irrespectively whether it belongs to the object or
not. Therefore, even in the case when the object boundary is not known, the rotation invariant moment technique is
often applicable. However, pattern recognition problems with a very distorted background patterns may exist where
this claim is not true.

Furthermore, the choice of the spatial basis could be critical for pattern recognition. The most popular options
are the Legendre polynomials [21,29], the Zernike polynomials [15,16,21,29], Mellin monomials (the Fourier–Mellin
moments) [15,29], complex monomials (complex moments) [5,6,29], the Tchebichef [20] and the Krawtchouk poly-
nomials [22](the Legendre, the Tchebichef and the Krawtchouk polynomials have been applied only in the Cartesian
domain).

Finally, Shen and Ip [27] introduced a set of wavelet moment invariants and a discriminative feature selection method
for the classification of seemingly similar objects with subtle differences. The features were selected automatically
based on the discrimination measures defined for the invariant features. Using a minimum-distance classifier, the
wavelet moment invariants achieved the highest classification rate for four test sets with the reference to the Zernike’s
invariants and Hu’s invariants.

Experiments with accuracy of the wavelet rotation invariants were published in [25].
However, [27] does not fully exploit the concept of multiresolution. The wavelet moments are obtained by integrating

the circular Fourier transform of the object image with the projections onto the mother wavelet at different resolution
levels. In the framework of the multiresolution analysis these integrals constitute the so called “details” suitable for
recognition of similar objects yet belonging to different classes such as digit 1 and letter “l”. However, such recognition
may fail when objects from the same class are subjected to random noise. It may also fail when the object is obtained
from the original object by adding a single or several parts or making holes (see our forthcoming introductory and
illustrative examples). As opposed to that, our technique uses both the approximation and the detail coefficients of
the multiresolution pyramid (filter bank). We show that the multiresolution analysis combined with our new feature
selection algorithm, designed specifically for the multiresolution pyramid, treats the above cases efficiently and has a
better recognition rate as compared with the preceding methods.

First of all, the method processes specific wavelet bands, then the wavelet coefficients individually, and, finally,
combinations of the coefficients. The circular Fourier transform of the object is sampled at integer frequencies called
the angular orders. Each sample is subjected to a fast quadrature mirror filter (QMF) to generate a filter bank. The
filter bank is characterized by a large number of coefficients and is always overcomplete. Many coefficients do not
contribute and even degrade the performance of the classifier. Our new multistage feature selection algorithm eliminates
noise sensitive, redundant and non-important features. As opposed to [27] the algorithm takes a full advantage of the
multiresolution analysis. First of all, we exclude noise sensitive frequencies. Next, we use a tree-structured filter bank
and prune the tree using the Kullback–Leibler distance which measures the relative entropy of the decompositions.
Next, we analyze the features individually by the standard ANOVA and feed the result to a selection procedure based
on the Apriori technique. The Apriori algorithm (AA) initially developed for data mining reduces the number of
combinations appearing when mining for frequent itemsets in large databases. Since the filter bank may produce a
large number of features, application of the AA is beneficial in our case as well. We propose a modified version of
the AA (MAA) combined with a partially supervised fuzzy C-mean clustering technique (FCM) [23,24]. The FCM
cost function is used in the MAA instead of a probabilistic measure employed by the standard AA to evaluate the
confidence in combinations of the features. Furthermore, the conventional AA requires that combinations of features
obey the so-called anti-monotonic property, that is, if a set cannot pass a test then all of its supersets fail the test as
well. We propose the so-called �-anti-monotonic property which states that the combination can fail the test within a
certain interval but still be considered at the next stage. Relaxing the conventional AA condition allows to pass a local
minimum and to find a better combination of the features.

We show that the MAA combined with the partially supervised FCM performs extremely well on the multiresolution
coefficients and creates features leading to high recognition rates. The recognition rate of the new algorithm has been
tested by 50,000 different images and compared with the Zernike moments, the Fourier–Mellin moments as well as
with the procedures and methods described in [27]. The algorithm has been also compared with a variety of previously
reported feature selection techniques such as the individual selection, the selection which employs all combinations of
the features, concatenation of the AA and the unsupervised FCM. Finally, we analyze the use of the Euclidian and the
Mahalonobis distance in the proposed framework.
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The paper is organized as follows. Section 2 presents basics of rotationally invariant moments. We introduce the
multiresolution filter-bank moments and analyze their efficiency in Sections 3 and 4, respectively. Section 5 deals with
our approach to feature selection and classification and, in particular, with the development of our new feature selection
algorithm. Section 6 demonstrates the performance of the proposed method applied to some binary images whereas
Section 7 presents a variety of object recognition experiments on the gray level images and demonstrates the efficiency
of the proposed schemes. Section 8 contains brief concluding remarks.

2. Basic definitions

2.1. The geometric moments

A regular moment mp,q is defined in the Cartesian coordinates by

mp,q =
∫ ∫

xpyqf (x, y) dxdy, (1)

where p, q are integer. In the context of image processing f (x, y) is the image function representing the light intensity
(the gray level) of the object. Furthermore, the moments can be also defined in the polar coordinate system with the
origin at the centroid of the object image given by

xC = m1,0

m0,0
, yC

m0,1

m0,0
.

2.2. Rotationally invariant moments

A general moment of an image f (r, θ) with respect to a moment function F (r, θ) in the polar coordinate system with
the origin at the centroid of the object is defined by

M =
2π∫
0

1∫
0

f (r, θ)F (r, θ)rdrdθ. (2)

Let F (r, θ) = β(r)ω(θ), where β(r) ∈ � and � is a family of radial functions such as the Zernike polynomials
[15,16,21,29], Mellin polynomials [15,29], etc. The choice of � defines the type of the moment. Furthermore, ω(θ)
denotes an angular function. Taking ω(θ) ≡ ωq(θ) = eiqθ provides the rotational invariance. Note, that if q is a continu-
ous variable, then the integral with regard to θ is nothing but the circular Fourier transform. In the theory of rotationally
invariant moments q is an integer called the angular order [27]. We present the above 2D integral by

Mq =
1∫
0

β(r)ξq(r)rdr, (3)

where ξq(r) =
2π∫
0

f (r, θ)ωq(θ)dθ is a complex function of spatial variable r.

Note that for a fixed r, ξq(r) represents the image in the frequency domain whereas for a fixed q the representation
remains spatial.

If M̃q is a moment of the rotated image f (r, θ + φ), where φ is the angle of rotation, then M̃q = eiqφMq. Therefore,
|M̃q| = |Mq|. In other words, rotations of the object affect the phase but not the magnitude.

Finally, note that
∫ 1

0 β(r)|ξq(r)|rdr and
∫ 1

0 |β(r)ξq(r)rdr| are rotationally invariant as well.

3. Rotationally invariant filter bank

From the viewpoint of functional analysis, each object is represented by an infinite and unique set of moments if
the family of functions � constitutes a basis in the appropriate functional space. In the case of wavelets, � consists
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Fig. 1. Two-resolution two-band filter bank tree.

of the wavelet basis functions given by ψm,n(r) = 2m/2ψ(2mr − 0.5n) [27], wherem the dilation parameter (the scale
index) and n the shifting parameter. The wavelet bases have a number of advantages since they could be adapted to the
spectrum as well as to the spatial properties of a particular set of objects. A multiresolution version of the proposed
wavelet moments will be introduced next.

In terms of the multiresolution analysis the sequence of approximating spaces is generated by the so-called scaling
functions ϕ [3,18] whereas the wavelet functions are employed to represent the orthogonal complements to the approx-
imating spaces called the detail spaces. We define the approximation and the detail moments respectively as follows:

am,n,q =
∫ 1

0
ξq(r)rϕm,n(r)dr, dm,n,q =

∫ 1

0
ξq(r)rψm,n(r)dr.

Note that
∑
nam+1,n,qϕm+1,n(r) − ∑

nam,n,qϕm,n(r) = ∑
ndm,n,qψm,n(r).

The discrete version of the above decomposition called the discrete wavelet multiresolution pyramid or the filter bank
was proposed by Mallat [3,18]. Mallat has shown that the discrete wavelet transform can be performed by using the so-
called finite impulse response filters (FIR) to construct a tree-structured filter bank. This approach can be derived with
or without a reference to the continuous version of the filter bank. Mallat proposed a quadrature mirror filter which cor-
responds to the orthogonal wavelets. Unser and Aldroubi [33] extended these techniques to the biorthogonal wavelets.

Within the framework of the QMF concept, the approximation and detail filter bank moments are constructed as
follows:

am,n,q =
∑

k
hk−2nam+1,k,q, dm,n,q =

∑
k
gk−2nam+1,k,q, (4)

m = m0,m0−1, . . . , 0 and am0+1,n,q = ξq(rn)rn, rn = (n+ 1)/N, n = 0, 1, . . . , N − 1. h and g are the low pass and
the high pass FIR filters, respectively. The output of the filters is down sampled and then a low-frequency output
(approximation) is fed to the identical filters shown in Fig. 1.

The average number of coefficients out of this system is the same as the number in. The number is doubled by
having two filters; then it is halved by the decimation back to the original number. Actually, no information is lost in
this scheme and it is possible to completely recover the original coefficients.

Furthermore, let f̃ be a rotated image, where φ is the angle of rotation, then

ãm,n,q = ∑
khk−2nãm+1,k,q = eiqφ

∑
khk−2nam+1,k,q,

d̃m,n,q = ∑
kgk−2nãm+1,k,q = eiqφ

∑
kgk−2nam+1,k,q.

Therefore, |am,n,q| and |dm,n,q| are rotation invariants for any q.

4. Why does the filter bank perform better than the conventional methods?

Let us illustrate the use of the approximation and the detail coefficients. Consider a prototype object Op and a test
object Ot . Let us introduce a relative approximation and detail error given by

e
q
A,m =

√√√√√√∑
n

⎛
⎝

∣∣∣aOpm,n,q∣∣∣ −
∣∣∣aOtm,n,q∣∣∣∣∣∣aOpm,n,q∣∣∣

⎞
⎠

2

, e
q
D,m =

√√√√√√∑
n

⎛
⎝

∣∣∣dOpm,n,q∣∣∣ −
∣∣∣dOtm,n,q∣∣∣∣∣∣dOpm,n,q∣∣∣

⎞
⎠

2

.
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Fig. 2. The digit and letter. (a) 1 and (b) “l”.

Recall that q is the index of the angular order, m corresponds to the resolution level and n to the spatial position of
the wavelet. The estimates eqA,m and eqD,m are nothing else than norms of vectors composed from the relative errors in
the approximation and detail coefficients at decomposition level m.

Our examples show that in some cases only the approximation error should be used for recognition. In some other
cases it should be the detail error and, in general, the pattern recognition systems should employ combinations of the
detail and approximation coefficients. Fig. 2 shows two different objects, digit 1 and letter “l”. Digit 1 which has been
subjected to the boundary noise 5% and 10% is depicted in Fig. 3(a) and (b). An object created from digit 1 by adding a
round attachment in the middle is depicted in Fig. 4. We also analyzed nine objects obtained from digit 1 by cutting out a
round hole having a varying location (see Fig. 5(a)–(i)). Finally, two different letters “O” and “Q” are depicted in Fig. 6.

Fig. 3. The digit 1 with boundary noise. (a) 5% noise and (b) 10% noise.
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Fig. 4. The digit 1 with attachment in the middle.

Fig. 5. The digit 1 with a hole having varying location inside the digit.

Tables 1–7 show the relative errors in the approximation and the detail coefficients corresponding to a five level
multiresolution analysis by means of the B-spline wavelets, the angular order q = 1. Consider, now vectors eA and
eD composed of elements e1

A,m and e1
D,m. For the case of digit 1 and letter “l” the details are slightly better for every

resolution level (for instance, for m = 5, eA = 22.1882, eD = 25.4783).

Fig. 6. The letters (a) “O” and (b) “Q”.
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Table 1
Relative error: 1 and “l”.

e m

m = 5 m = 4 m = 3 m = 2 m = 1

e1
A,m

22.1882 6.9889 5.8049 2.7225 1.6057

e1
D,m 25.4783 11.6864 5.7027 3.2314 1.7271

Table 2
Relative error: 1 with 5% boundary noise.

e m

m = 5 m = 4 m = 3 m = 2 m = 1

e1
A,m

6.2042 2.6995 1.7308 0.9459 0.5349

e1
D,m 9.1066 4.3081 1.4032 0.7560 0.5998

Table 3
Relative error: 1 with 10% boundary noise.

e m

m = 5 m = 4 m = 3 m = 2 m = 1

e1
A,m

11.3168 6.7803 3.3334 1.5894 0.9619

e1
D,m 18.1761 9.8956 7.5661 2.0695 2.0016

Table 4
Relative error, 1 with an attachment.

e m

m = 5 m = 4 m = 3 m = 2 m = 1

e1
A,m

42.3518 20.4168 11.6810 6.8006 4.6799

e1
D,m 29.4903 4.7810 7.7067 5.8521 2.0794

Table 5
Relative error, approximations, 1 with a hole having varying location.

Position in Fig. 5 e1
A,m

Total error

m = 5 m = 4 m = 3 m = 2 m = 1

(i) 7.8313 5.1957 3.6077 1.7937 0.5443 18.9727
(h) 9.9128 6.1723 2.9294 2.1135 1.0101 22.1381
(g) 10.4518 5.6071 3.9271 4.5559 2.3707 26.9126
(f) 52.6387 30.1209 24.7501 30.1129 15.4706 153.0932
(e) 29.5425 12.9450 10.1065 19.1939 9.3009 81.0888
(d) 11.1161 5.7834 2.4427 3.2869 1.5367 24.1658
(c) 8.4864 4.5070 1.5316 1.1410 0.8624 16.5284
(b) 8.1737 4.5867 2.2386 1.7691 0.6853 17.4534
(a) 6.2806 3.7115 2.1025 0.9009 0.3651 13.3606

Average 16.0482 8.7366 5.9596 7.2075 3.5718
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Table 6
Relative error, details, 1 with a hole having varying location.

Position in Fig. 5 e1
A,m

Total error

m = 5 m = 4 m = 3 m = 2 m = 1

(i) 16.8718 15.6832 9.4616 5.5532 5.1424 52.7122
(h) 24.1564 20.3270 15.2146 7.1422 5.8996 72.7398
(g) 19.7997 13.4352 4.9179 5.6855 2.8146 46.6529
(f) 11.0551 4.5839 4.0826 3.1346 1.8397 24.6959
(e) 6.9707 1.9645 1.7970 1.1650 1.6512 13.5484
(d) 19.9375 10.9415 9.1181 5.7682 1.8442 47.6095
(c) 17.2088 13.3634 9.8229 6.2616 3.9144 50.5711
(b) 18.8860 11.8602 8.2078 7.2531 8.1094 54.3165
(a) 11.9447 8.0676 6.4575 4.9301 2.5286 33.9285

Average 16.3145 11.1363 7.6756 5.2104 3.7493

However, digit 1 subjected to 5% and 10% boundary noise is characterized by eA = 6.2042, eD = 9.1066 and
eA = 11.3168, eD = 18.1761. Moreover, the approximation coefficients perform better on every level (Tables 2 and 3).

Small detail errors often appear in cases when a new object is obtained from the original object by attaching an
additional part or cutting holes inside the object. An object obtained from digit 1 by adding an attachment shown in
Fig. 4 is characterized by eA = 42.3518, eD = 29.4903. The approximation error is larger for each resolution level
(Table 4). An interesting experiment with a round hole having varying location inside the digit 1 is presented in
Tables 5 and 6.

Tables 5 and 6 reveal that the behavior of the error associated with the approximation and detail coefficient is
noticeably changing depending on the location of the hole. Suppose that we consider the new objects different from
digit 1. Then the approximation coefficients perform the best when the hole is placed near the center of the object
(Table 5). Interestingly enough the performance of the detail coefficients is the opposite (Table 6).

The best recognition occurs when the hole is located at the periphery of the object. This phenomenon has a simple
explanation.

Since the object has virtually the shape of a rectangle with a high aspect ratio the hole may significantly contribute
to the approximation error (low frequency) when it is close to the centroid. However, the hole far from the centroid
changes the result of integration only for large r. Since for these r-s there exists a large area belonging to the white
background, the hole affects only the high frequencies and the details become more important than the approximations
at all levels.

Finally, the approximation and detail errors corresponding to two different letters “O” and “Q” are given in Table 7.
The approximation is better at every resolution level (eA = 89.8708, eD = 48.1100).

The examples clearly demonstrate that feature selection must be performed with regard to the approximation and
detail coefficients. It may consist of only the details as in [27], or only of the approximations such as in the case of the
object in Figs. 4 and 6. However, usually it is a combination of approximations and details calculated for at several
resolution levels. Besides, the feature selection procedure must be intelligent enough to use the multiresolution nature
of the filter bank to analyze not only the frequency bands but contributions of the individual wavelets as well. As a
matter of fact, this problem has not been approached in connection to wavelet moments [27] before. The next section
presents one of the possible solutions.

Table 7
Relative error: “O” and “Q”.

e m

m = 5 m = 4 m = 3 m = 2 m = 1

e1
A,m

89.8708 61.7995 19.9501 21.0388 13.4470

e1
D,m 48.1100 31.7471 15.1061 12.7774 20.1356
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5. Feature selection algorithm

Selection of features is a crucial step for an object recognition system [1,30]. The aim is to generate the best
combination of features that maximizes the recognition rate. We present an algorithm based on examining the bands
and the features individually and in combinations. As opposed to [27] our algorithm takes a full advantage of the
multiresolution analysis. First, we prune the filter bank using the relative entropy of the decompositions. Next, we
analyze the bands and contributions of each individual wavelet as well. We test the features individually by the
standard ANOVA and feed the result to a selection procedure based on a new modification of the Apriori technique to
analyze combinations of the wavelets. A detailed description of the feature selection procedure is given below.

(1) Calculate angular orders by sampling the circular Fourier at integer values of q as follows:

ξq(r) =
2π∫
0

f (r, θ)eiqθdθ.

(2) Discard noise-sensitive angular orders by evaluating the least square error type given by

Els(q) =
∑I
i=1

∑J
j=1

∑N
n=1

(∣∣ξq(rn)i,Template
∣∣ − ∣∣ξq(rn)i,j

∣∣)2

I J N
, (5)

where I is the number of the classes, J the number of objects in each class and ξq(rn)i,Template the circular Fourier
transform of the template associated with class i. Note that the procedure is just a preliminary filtering which
allows to discard easily recognizable bad choices defined byE(q) ≥ εpre, where εpre is a prescribed threshold. The
resulting set of all q′ that pass the pre-filtering is fed to the next step of the procedure.

(3) Apply the QMF to q′ as illustrated in Fig. 7.
The result is a tree-structured filter bank of coefficients (features).

(4) Prune the resulting filter bank. The algorithm finds the best discriminating subbands which produce well-separated
classes. A symmetric version of the Kullback–Leibler distance based on the relative entropy [26,31] is used to
measure the discrimination power of the subband. A good subband is the one that reduces the relative entropy [31]
which for the case of two classes C1 and C2 is given by

δC1C2 (m, k, q)=1/2
∑
n

(
γC1 (m, k, n, q) log

(
γC1 (m, k, n, q)

γC2 (m, k, n, q)

)
+γC2 (m, k, n, q) log

(
γC2 (m, k, n, q)

γC1 (m, k, n, q)

))

(6)

where γCi (m, k, n, q) = ∑
Ci

((wm,n,q · w∗
m,n,q)/

∑
l(am+1,l,q · a∗

m+1,l,q)).

Fig. 7. The two band filter bank.
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Fig. 8. The Kullback–Leibler distance (relative entropy), a two-band filter bank.

* denotes complex conjugate, m is the resolution level, k = 0, 1 denotes the left and right branches of the tree,
n is the position index. wm,n,q is given by

wm,n,q =
{
am,n,q, if k = 0,

dm,n,q, if k = 1.

In the case of I classes, δ(m, k, q) = ∑I−1
i=1

∑I
j=i+1δCiCj (m, k, q) (Fig. 8).

The algorithm evaluates the discrimination power of the subbands by comparing the Kullback–Leibler distance
(Eq. ()) before and after the split as shown in Fig. 9.

(5) Reduce the dimension of the feature space by analyzing the features individually using a statistical testing
ANOVA [14,32]. We use a one-way ANOVA with a randomized complete block design to verify the assumption
μ1 /= μ2 /= · · ·μi /= · · · /= μI , where μi is the mean-feature of the class i.

(6) Analyze combinations of the features. At this stage the result of the multiresolution analysis is fed to the modified
Apriori algorithm (MAA). The Apriori selection initially developed for data mining applications reduces the
number of combinations appearing when mining for frequent itemsets in large databases. Since the filter bank
produces a large number of features the AA is beneficial in this case as well. An initial set of the “frequent”
features L1 is found by ANOVA. It is then used to find L2 which consists of the best pairs of features taken from
L1. The set of the best discriminating 2-itemsets is then used to findL3, and so on. A set of the candidate k-itemsets
is generated by joining Lk−1 with itself Ck = Lk−1 × Lk−1. The choice of a good combination of the features is

Fig. 9. Example of the pruning algorithm for two main cases: Case (a): δ(m0, 0, q) > δ(m0 − 1, 0, q) + δ(m0 − 1, 1, q). Keep subbands δ(m0 −
1, 0, q) and δ(m0 − 1, 1, q); Case (b): δ(m0, 0, q) ≤ δ(m0 − 1, 0, q) + δ(m0 − 1, 1, q). Remove subbands δ(m0 − 1, 0, q) and δ(m0 − 1, 1, q).



2468 A. Rodtook, S.S. Makhanov / Mathematics and Computers in Simulation 79 (2009) 2458–2475

Fig. 10. Conventional Apriori algorithm (the solid line) and modified Apriori algorithm (the solid and the dashed lines), “better” means that the
combination is better than the both features separately.

based on evaluating the partially supervised FCM-type cost function [2,7,9,11,23,24,28] used by analogy with the
measure of confidence in the conventional Apriori algorithm [10].

The cost function is given by

fC(X) = J(X) log(Nmiss + ϑ), (7)

where X is a combination of features, J is the fuzzy C-mean cost function, Nmiss is the number of training patterns
that have been incorrectly clustered, ϑ > 1 a prescribed constant to eliminate the singularity log(0). Besides the
features should be normalized or standartized prior to calculating fC.

Furthermore, the conventional AA requires that combinations of features obey the so-called anti-monotonic property,
that is, if a set cannot pass a test then all of its supersets fail the test as well. For example, in the case of two features A
and B the anti-monotonic property requires that

fC(A ∪ B) ≤ fC(A) and fC(A ∪ B) ≤ fC(B).

As opposed to that, the MAA employs a�-anti-monotonic property which makes it possible to pass a local minimum
and find a better combination of the features. The confidence in a combination of two features A and B with regard to
a cost function fC(fC ≥ 0) is evaluated as follows:

fC(A ∪ B) ≤ fC(A) +� and fC(A ∪ B) ≤ fC(B) +�,

where defines � the allowable interval of confidence (Fig. 10).
The confidence in a combination of n features is evaluated using the same principle. It should be noted that the

features must be normalized and standardized prior to the selection. The best combination is the k-itemset which
minimizes the cost function above. It is also possible to select several itemsets with the smallest values of the cost
function. Finally, the MAA applies as follows:

• find the best feature set from each particular resolution.
• find the best feature set from the entire multiresolution analysis.
• find the best feature set from the entire set of angular orders q′.

6. Why does the feature selection perform better?

This chapter exemplifies some steps of the algorithm described above applied to differentiate between digit 1 and
letter “1”.



A. Rodtook, S.S. Makhanov / Mathematics and Computers in Simulation 79 (2009) 2458–2475 2469

Fig. 11. Noise sensitive features extracted from the digit 1 and letter “l”. (a) Low level noise, (b) medium level noise, and (c) high level noise.

6.1. Example 1: noise sensitive features

Noise sensitive features |d4,0,1| and |d4,1,1| extracted 1 and “1” are shown in Fig. 11 The high level noise makes the
objects inseparable. Consequently, |d4,0,1| is discarded at the ANOVA stage. |d4,1,1| has a better separability, however,
this feature will be discarded as well at the Apriori selection stage.

6.2. Example 2: pruning the filter bank tree

Fig. 12 illustrates the pruning step for the filter bank tree created for the angular order at q = 1 for recognition
between digit 1 and letter “1”. The coarsest level m = 1 as well as level m = 3 have been eliminated since (δ(a, 2) =
0.082) < (δ(a, 1) + δ(d, 1) = 0.098) and (δ(a, 4) = 0.394) < (δ(a, 3) + δ(d, 3) = 0.423).

Note that although levelm = 3 has been excluded, it does not mean that all the subsequent levels are not appropriate.
For example, in this case, level m = 2 has also been selected (Fig. 13).

Fig. 12. Pruning subbands at resolution level m = 1 and m = 3 by using the Kullback–Leibler distance.
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Fig. 13. Discarding noise sensitive features (for every particular subband) by using ANOVA.

6.3. Example 3: the modified Apriori algorithm

Our MAA applied to feature selection for differentiation between 1 and “1” is illustrated here. We check all
combinations taken from the original set at the resolution level m = 4 consisting of 40 coefficients (20 details and
20 approximations). The total number of combinations is approximately 1.1 × 1011. Assuming that one combination
requires only one floating point operations we obtain approximately 1000 Gflops.

Fig. 14. The modified Apriori algorithm applied to a filter bank of rotationally invariant moments.
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Fig. 14 illustrates the MAA applied to this case. The first itemset L1 is the output of ANOVA. It consists of 12
approximation and 13 detail coefficients. The next level L2 contains only 14 items, L3—11 items and L4 has only 1
item. The number of the floating point operations required at the first step is equal to 0.3 Gflops, at the second step it
is 0.0006 Gflops, finally the third step consumes only 0.000002 Gflops. Therefore, the time required for calculations
has been reduced by a factor of 3000.

Suppose that the final set of the best combinations of features is selected using the condition fC ≤ 17. It includes
then {a15, d14}, {a15, d17}, {d14, d17}, {a15, d14, d17} and {a15, a16, d14, d17}. The best combination is {a15, d14, d17}.
However, the conventional AA would discard {a15, a16, d14} since fC(a15, a16, d14) > fC(a15, d14). Consequently a
good combination {a15, a16, d14, d17} which satisfies fC ≤ 17 will not be produced.

However, the MAA characterized by � = 2 will generate {a15, a16, d14, d17}. Note that we the case of 20 + 20
coefficients above was considered for convenience. Taking, for example, 32 + 32 coefficients leads to astronomical
2 × 1010 Gflops which for a desktop computer with a Pentium 4 means approximately 300 years of calculations.
However, the proposed method requires only a few hours.

7. Experimental results

We evaluate the performance of the proposed algorithm by three datasets. The first dataset consists of 48,400 noisy
images [34] based on 20 basic aircraft silhouettes: Alpha Jet, Am-X, Mirage F1, F-4 Phantom, F-15 Eagle, MiG-17,
A-6 Intruder, Aviocar C-212, An-32 Cline, F-5 Freedom, An-12 Cub, Hunter, Brewer, Jastreb, MiG-29, Buccaneer,
MiG-25, Mirage III, F-18 Hornet, and Yak-36 (see Fig. 15). Each silhouette produces 1600 training images and 820
testing images. The second dataset based on an online database NIST [8], consists of machine-printed characters,
namely, 11,000 upper case English letters (bold, courier). We use 7000 letters for training and 4000 for testing. The last
dataset consists of 14,000 gray level images based on 10 Thai musical instruments [4]: SAW DUANG, SAW OU, SAW
SAM SAI, SALOR, SUENG, JAKAE, PEE CHAWA, PEE NOKE, RANAD TUM, and RANAD AKE (see Fig. 16).
Each instrument produces 950 training images and 450 testing images. All of the datasets are degraded by an impulse
noise varying from 0% to 8% and a transformation noise. In the case of the NIST data we also consider an interesting
effect of the boundary noise appearing after separation of touching letters by means of dilation.

We discuss experiments with the B-spline wavelets, however, the orthogonal wavelets such as the Daubechies
wavelets 2, 4 and 6 and the Coiflet wavelets [3,18] were tested as well. Although the orthogonal wavelets easily allow
to reconstruct the image, the biorthogonal B-splines with underlying symmetric FIR filters were always performing
slightly better.

Denote our proposed algorithm by FB-P-AN-MAA-FCM-P, FB stands for the proposed filter bank, P for pruning,
AN for ANOVA, MAA for the modified Apriori algorithm, FCM for fuzzy C-mean clustering, P for partially supervised
FCM, so that FCM-P corresponds to the FCM with the cost function given in Section 5.

Furthermore, FCM-E and FCM-M correspond to the unsupervised FCM endowed with the Euclidian and the
Mahalanobis distance, respectively. Finally, the notation I–V is used if the features were selected individually based
on the between-to within-class variance ratio [27].

The comparisons of an average classification rate of the proposed FB-P-AN-MAA-FCM-P versus the most popular
selection methods and moment invariants are shown in Table 8. Table 8 includes degradation by all types of noise:
rotation, translation, scaling and random valued impulse noise which η denotes the impulse noise percentage.

Table 8 shows the advantages of our approach. For instance, “Shen-I-V” applied to the NIST symbols has 85.94%
average recognition rate, whereas our method provides recognition rate of about 95.46%. The table shows that every
component of the algorithm is almost equally important. Namely, combining the FB with the FCM shows a 3% increase.
Adding the Mahalanobis distance produces a 6% increase. Finally, applying partial supervision adds another 3% so
that the recognition rate becomes improves by 9%.

Tables 9–14 show the average classification rate for different type of image distortions such as the random impulse
noise, transformation noise, segmentation noise, scaling as well as certain combinations of them. In every case algorithm
always outperforms Shen-I-V, Shen-FCM-M, as well as Zernike-I-V and Fourier–Mellin-I-V.

The efficiency of the algorithm with the reference to the preceding techniques becomes significant when increas-
ing the noise intensity. The most impressive result is an almost 44% absolute increase (55% relative increase) with
regard the Fourier–Mellin-I-V in the case of the aircraft silhouettes degraded by 6–8% impulse noise and the rotation
noise (Table 10). The rotation and segmentation noise affects the NIST characters and the Thai musical instruments
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Fig. 15. Twenty Silhouettes of aircraft. (a) Alpha Jet, (b) Am-X, (c) Mirage F1, (d) F-4 Phantom, (e) F-15 Eagle, (f) MiG-17, (g) A-6 Intruder, (h)
Aviocar C-212, (i) An-32 Cline, (j) F-5 Freedom, (k) An-12 Cub, (l) Hunter, (m) Brewer, (n) Jastreb, (o) MiG-29, (p) Buccaneer, (q) MiG-25, (r)
Mirage III, (s) F-18 Hornet, and (t) Yak-36.

(Tables 11–14) more significant than the aircraft silhouettes since the centroids of the characters and the instruments
often lie outside the object body.

Consequently, the centroids are much more sensitive to the noise. Observe the most interesting cases. In case of the
NIST characters (see Table 12, 4.5–6% noise) and a combination of the impulse noise and the transformation noise

Table 8
Average classification rates.

Algorithms Classification rate

Aircraft silhouettes
0 ≤ η < 8%

Upper case NIST
character 0 ≤ η < 6%

Thai musical instruments
0 ≤ η < 4.5%

FB-P-AN-MAA-FCM-P 95.38 95.46 93.07
FB-P-AN-MAA-FCM-M 91.19 92.76 89.78
FB-P-AN-MAA-FCM-E 88.05 89.73 84.66
Shen-FCM-M 88.51 90.94 86.58
Shen-FCM-E 85.17 89.10 83.86
Shen-I-V 82.94 85.94 81.01
Zernike-I-V 82.19 85.03 80.51
Fourier–Mellin-I-V 77.61 79.31 74.16
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Fig. 16. Gray level images of Thai musical instruments. (a) “SAW DUANG” (Fiddle), (b) “SAW OU” (Fiddle), (c) “SALOR” (Lute), (d) “SAW
SAM SAI” (Fiddle), (e) “SUENG” (Lute), (f) “JAKAE” (Lute), (g) “PEE CHAWA” (Pipe), (h) “PEE NOKE” (Pipe), (i) “RANAD TUM” (gamelan),
and (j) “RANAD AKE” (gamelan).

Table 9
Aircraft images, impulse noise.

Algorithms Noise 0 ≤ η < 2 Noise 2 ≤ η < 4 Noise 4 ≤ η < 6 Noise 6 ≤ η < 8

FB-P-AN-MAA-FCM-P 98.83 95.49 91.52 81.21
FB-P-AN-MAA-FCM-M 97.71 92.91 85.13 67.09
Shen-FCM-M 96.28 90.39 81.16 61.31
Shen-I-V 95.89 85.35 72.39 53.49
Zernike-I-V 95.52 84.33 70.91 51.41
Fourier–Mellin-I-V 90.24 77.78 59.43 43.62

Table 10
Aircraft images, impulse noise combined with rotation and scaling.

Algorithms Noise 0 ≤ η < 2 Noise 2 ≤ η < 4 Noise 4 ≤ η < 6 Noise 6 ≤ η < 8

FB-P-AN-MAA-FCM-P 98.45 94.66 90.28 78.53
QMF-PRUNING-FCM-M 95.76 91.08 81.83 62.26
Shen-FCM-M 95.01 89.84 78.02 54.25
Shen-I-V 92.88 82.30 65.36 45.01
Zernike-I-V 92.24 80.36 62.43 41.26
Fourier–Mellin-I-V 87.76 71.43 47.01 34.74
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Table 11
The NIST characters, impulse noise and segmentation noise.

Algorithms Noise 0 ≤ η < 1.5 Noise 1.5 ≤ η < 3 Noise 3 ≤ η < 4.5 Noise 4.5 ≤ η < 6

FB-P-AN-MAA-FCM-P 99.01 95.83 90.85 86.23
FB-P-AN-MAA-FCM-M 98.97 93.92 87.98 72.12
Shen-FCM-M 98.12 91.82 84.83 67.98
Shen-I-V 97.04 88.65 80.57 61.05
Zernike-I-V 96.90 87.73 78.03 58.24
Fourier–Mellin-I-V 94.27 81.82 70.12 49.61

Table 12
The NIST characters, impulse noise and transformation noise.

Algorithms Noise 0 ≤ η < 1.5 Noise 1.5 ≤ η < 3 Noise 3 ≤ η < 4.5 Noise 4.5 ≤ η < 6

FB-P-AN-MAA-FCM-P 98.85 94.40 88.34 80.51
FB-P-AN-MAA-FCM-M 96.83 92.96 84.98 67.24
Shen-FCM-M 96.21 90.84 81.15 60.87
Shen-I-V 94.35 85.76 72.17 50.93
Zernike-I-V 92.24 83.34 67.92 46.31
Fourier–Mellin-I-V 89.60 77.08 61.12 39.90

Table 13
Gray level images of Thai musical instruments, random-valued impulse noise.

Algorithms Noise 0 ≤ η < 1.5 Noise 1.5 ≤ η < 3 Noise 3 ≤ η < 4.5

FB-P-AN-MAA-FCM-P 97.29 92.54 85.13
FB-P-AN-MAA-FCM-M 95.02 87.38 77.98
Shen-FCM-M 93.81 86.53 75.02
Shen-I-V 92.04 82.18 71.11
Zernike-I-V 91.74 81.20 70.96
Fourier–Mellin-I-V 89.02 77.49 67.82

Table 14
Gray level images of Thai musical instruments, random-valued impulse noise and transformation noise.

Algorithms Noise 0 ≤ η < 1.5 Noise 1.5 ≤ η < 3 Noise 3 ≤ η < 4.5

FB-P-AN-MAA-FCM-P 96.53 89.14 78.44
FB-P-AN-MAA-FCM-M 92.71 80.07 67.08
Shen-FCM-M 91.04 76.21 62.24
Shen-I-V 89.82 74.52 58.51
Zernike-I-V 89.88 70.19 56.96
Fourier–Mellin-I-V 86.17 65.32 49.13

Shen-I-V, Zernike-I-V and Fourier–Mellin-I-V display 50.93%, 46.31% and 39.90% recognition rate, respectively
whereas the proposed filter bank invariants 80.51%. In case of the Thai musical instruments and 3–4.5% random-
valued impulse noise combined with the transformation noise the Shen-I-V, Zernike-I-V and Fourier–Mellin-I-V
display 58.51%, 56.96% and 49.13% recognition rate, respectively whereas the proposed filter bank invariants show
78.44% recognition rate.

8. Conclusions

The proposed multiresolution moment invariants extend the idea of applying wavelets for rotation invariant pattern
recognition. Our approach based on the analysis of the high- and the low-frequency filter bank coefficients combined
with elimination of the noise sensitive features and the modified Apriori-fuzzy C-mean partly supervised selection
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leads to a tangible improvement of the recognition rate with the reference to the conventional methods. We obtain an
accuracy increase ranging from 5% to 27% depending on the noise level. A large number of testing images and the
variety of the sources of the noise makes it possible to conjecture that the proposed technique performs better than the
existing ones for other applications.
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