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a b s t r a c t

Optical character recognition (OCR) is one of the fundamental problems in artificial intel-

ligence and image processing, but recent progress in OCR represents a security challenge

for Web sites that throttle requests with image based CAPTCHAs (Completely Automated

Public Turing Tests to Tell Computers and Humans Apart). A CAPTCHA is challenge-

response test placed within web forms to determine whether the user is human. Unfor-

tunately, algorithms capable of solving image based CAPTCHAs can be used to create spam

accounts and design malicious denial of service (DoS) attacks, causing financial and social

damage. The problem of defeating digital image CAPTCHAs is thus twofold. On the one

hand, it is an important problem in artificial intelligence and image processing. On the

other hand, publicly available CAPTCHAs that are not tested against state of the art ma-

chine recognition algorithms may make the systems vulnerable to attack by software bots.

This paper considers a very important subclass of text CAPTCHAs, those characterized

by salt and pepper noise combined with line (curve) noise. Thus far, attacks on CAPTCHAs

with this type of noise have used relatively simple image processing methods with some

success, but state-of-the-art segmentation methods have not been fully exploited. In this

paper, we propose and benchmark two strong segmentation methods. The first method is a

modification of a multiple quadratic snake proposed for road extraction from satellite

images. The second competing method is a boundary tracing routine available in the

OpenCV open source library.

A first numerical experiment indicates excellent accuracy for both methods. A second

experiment on human recognition shows that the CAPTCHAs used in the study are already

near the threshold of being too hard for humans. Finally, a third numerical experiment

presents a more difficult set of CAPTCHAs with the addition of anti-binarization methods.

The snake-based method is shown to be more resilient to anti-binarization schemes than

boundary tracing and state-of-the art projection-based attacks on CAPTCHAs.

Since CAPTCHAs corrupted by small line noise are shown to be difficult for humans and

relatively easy for our algorithm, CAPTCHA designers should introduce more challenging

distortions into their CAPTCHAs, lest the security of systems based on them be

compromised.
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1. Introduction artificial intelligence. Second, and possibly more important in
CAPTCHAs (Completely Automated Public Turing Tests to Tell

Computers and Humans Apart) are tests that are easy for

humans but difficult for computers (von Ahn et al., 2003).

CAPTCHAs can be used in any system that benefits from dis-

tinguishing between humans and software bots. The first

known CAPTCHA was developed at Digital Equipment Cor-

poration’s Systems Research Center and used by AltaVista

(Lillibridge et al., 2001) to protect the search engine’s URL

submission form. Early work at Carnegie Mellon University

was deployed by Yahoo! to prevent automated spam bots

from signing up for large numbers of free accounts (von Ahn

et al., 2004).

Besides protecting data entry forms and account registra-

tion systems from bots, other applications include protecting

recommender systems and polls from skewing by bots,

increasing security and verifiability in e-voting systems

(Oppliger et al., 2008; Simha and Vora), protecting information

in Web pages from search engine bots and screen scrapers

(Carnegie Mellon University, 2000), preventing email and SMS

spam (Dwork and Naor, 1992; Shirali-Shahreza andMovaghar,

2007; He et al., 2008), deterring dictionary attacks in password

authentication systems (Pinkas and Sander, 2002; Xu et al.,

2003; Namprempre and Dailey, 2007), securing online e-com-

merce transactions (Steeves and Snyder, 2007), and acquiring

human knowledge (da Silva and Garcia, 2007).

There are many types of CAPTCHAs. The most common

type of CAPTCHA displays a degraded image of a word or

character sequence to the human,who responds by typing the

character sequence he or she sees (Coates et al., 2001; Chewa

and Baird, 2003; Baird et al., 2005; Baird and Bentley, 2005; von

Ahn et al., 2008). Digitized characters are not the only things

humans can potentially recognize more accurately than

computers. Other image-based CAPTCHAs have been pro-

posed (Elson et al., 2007; Datta et al., 2005; Rusu and

Govindaraju, 2004, 2005; Gossweiler et al., 2009; Chow et al.,

2008; Chew and Tygar, 2004; Misra and Gaj, 2006). Since digi-

tal images may not be suitable for all communication media,

other types of CAPTCHAs use sound clips (von Ahn et al., 2008;

Holman et al., 2007), synthetic handwritten characters (Achint

et al., 2009) or text and text graphics (Godfrey, 2002;

Namprempre and Dailey, 2007; Ximenes et al., 2006), and

others require the user to perform a specific task using a stylus

or finger such as connecting noisy dots on a tablet (Shirali-

Shahreza and Shirali-Shahreza, 2006).

Since so many different Internet applications base some

aspect of their security models on the CAPTCHA properties of

being easy for humans and difficult for computers, it is criti-

cally important that CAPTCHAs truly have the assumed

properties. Not long after CAPTCHAs began to appear on Web

sites, artificial intelligence and computer security researchers

began to test these assumptions, taking up the challenge of

breaking deployed CAPTCHAs.

There are two major reasons to attack public CAPTCHAs.

First, a program that can pass a CAPTCHA with high proba-

bility is effectively solving a hard artificial intelligence prob-

lem, so progress in defeating CAPTCHAs designed to defeat

machine recognition systems advances the state of the art in
terms of immediate consequences, system designers simply

use CAPTCHA libraries presuming the tests to satisfy the

CAPTCHA properties of being easy for humans and hard for

machines, so publicly available CAPTCHAs that have not been

tested against state of the art machine recognition algorithms

may make the systems that use them vulnerable to attack by

software bots without the designer’s knowledge. Through a

continuous process of breaking then improving CAPTCHAs,

we expect the community to eventually arrive at a set of

design principles or guidelines for ensuring success against

known state of the art attacks.

This paper focuses on the most widely used form of

CAPTCHA, the digitized character CAPTCHA, in which a text

string is digitized and distorted before being presented to the

user. Studies of human recognition conclude that these dis-

tortions are the “ideal choices for usable and secure CAPTCHA

distortion techniques” (Lee and Hsu, 2011). Examples of sites

using these types of CAPTCHAs include prominent social

networking websites such as “Tagged” (Tagged, Inc., 2012),

“Friendster” (Friendster, Inc., 2012), “MetroFLOG” (metroFLOG,

2012), “Netlog” (Netlog, 2012), and “VKontakte” (VKontakte,

2012), as well as expert electronic money companies such as

Moneybookers (Moneybookers, 2012) (see also (Hernandez-

Castro and Ribagorda, 2010)). Many CAPTCHAs in this cate-

gory are generated using widely-used open source libraries or

public services.

The experiments reported in this paper empirically eval-

uate the utility of two strong segmentation techniques for

attacking text CAPTCHAs with line noise. It first proposes a

modification of a multiple quadratic snake method originally

used for extraction of roads and other network structures

from digital images, and the second method uses the same

preprocessing as the snake method followed by Otsu binar-

ization and standard contour tracing.

As previously mentioned, in this paper we evaluate two

methods, the first of which is based on multiple quadratic

snakes. This method builds on the large literature on active

contours, which provide an elegant framework for optimal

estimation of object boundaries. Snake-based segmentation is

potentially powerful for defeating CAPTCHAs. It does not

make any assumptions regarding the size and position of the

characters. The characters can be rotated, skewed, and scaled

without affecting the accuracy of the segmentation. The

resulting contour can be evaluated by fast pattern recognition

methods designed for written or typed characters. If it is

possible to obtain accurate segmentation via snakes, classifi-

cation will be fast and efficient.

In addition to the quadratic snake model, as a baseline for

comparison, this paper also benchmarks the capabilities of a

simpler contour extraction approach based on the same pre-

processing method as the snake-based method followed by

simple Otsu binarization and foreground object tracing. The

tracingmethod is the standard algorithm implemented by the

OpenCV cvFindContours function (Suzuki and Abe, 1985).

In an extensive empirical evaluation on images generated

by a widely used CAPTCHA API (Version 6.x-2.4) developed

under the Drupal CAPTCHA project (2012), we first find that

the quadratic snake based method and the standard contour

http://dx.doi.org/10.1016/j.cose.2013.05.003
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tracing method are both extremely accurate at character

segmentation, with segmentation accuracies of 90% and 86%

compared to the ground truth, respectively. We further find

that the quadratic snake basedmethod is superior to standard

contour tracing under low contrast conditions. Finally, in

terms of recognition ability, when the CAPTCHA segmenta-

tion methods are combined with a standard general-purpose

character OCR algorithm, we obtain accuracies of 73% and

70%. Note that to deem a scheme insecure the attacking sys-

tem only needs to reach 1% precision (Bursztein et al., 2011).

Although further improvements in accuracy are no doubt

possible, at the reported levels of accuracy, we believe that

CAPTCHA segmentation under conditions of “small line”

noise should now be considered a solved problem and that

CAPTCHA designers should introduce more challenging dis-

tortions into their CAPTCHAs, lest the security of systems

based on them be compromised. We hope that the results

reported in this paper will spur CAPTCHA designers to further

improve the segmentation resistance of their methods.

The rest of the paper is organized as follows. In Section 2,

we discuss related work from the literature on CAPTCHA at-

tacks and our specific segmentationmethods. In Section 3, we

provide a detailed account of our algorithms and techniques

for CAPTCHA segmentation. In Section 4, we report on the

design of and results of a series of experiments to evaluate the

proposed CAPTCHA segmentation in comparison with other

methods and humans. In Section 5, we discuss the impact of

the research. Finally, in Section 6, we provide concluding re-

marks and pointers to future work.
2. Related work

Mori and Malik (2003) were the first researchers to publish

attacks on visual CAPTCHAs. They applied shape context

matching to the EZ-Gimpy and Gimpy CAPTCHAs with high

success rates. Yan and Ahmad (2008) show that a relatively

simple processing stream comprising of binarization, fixing of

broken characters, removal of simple arcs, and breaking of

connected characters could reliably segment the characters in

the Microsoft digitized character CAPTCHA. The Microsoft

CAPTCHA turned out to be breakable even though it was

specifically designed by experts to be segmentation-resistant.

Other researchers have broken other types of image

CAPTCHAs such as the Asirra object recognition CAPTCHA

using standard machine learning techniques (Golle, 2008) and

audio CAPTCHAs based on text-to-speech synthesis using

standard speech recognition techniques (Chan, 2003).

Researchers at Stanford University (Bursztein et al., 2011)

have recently published the most comprehensive study to

date of techniques for breaking text CAPTCHAs along with a

series of lessons learned for CAPTCHA designers to improve

the resilience of their CAPTCHAs under attack (Zhu et al.,

2010; Qu and Wu, 2012). They analyze the three main steps

of CAPTCHA processing: pre-processing, segmentation, and

recognition. The pre-processing stage attempts to make the

CAPTCHA easier to segment, through noise removal, color

removal, and so on. The segmentation step attempts to isolate

the text characters from the background and noise. The

recognition step then attempts to classify the segmented
image into a character string. They corroborate what several

researchers have pointed out, that the main challenge in

attacking digitized character CAPTCHAs is the character seg-

mentation problem, inwhichwe aim to separate the text from

the background and any noise present in the image. Once this

is done, standard machine learning based character recogni-

tion techniques are extremely effective. This means that it is

essentially possible to reduce the digitized text CAPTCHA

problem to the problem of text segmentation in the presence

of noise.

One of the most common types of distortions used in

digitized text CAPTCHAs is the introduction of line noise. The

idea is to overlay the noisy, distorted characters with lines and

curves of various thickness. These lines interfere with seg-

mentation methods because they may be confused with the

actual target characters or join multiple target characters into

a single foreground object. Bursztein et al. (2011) distinguish

between “big” and “small” lines, for which different strategies

are recommended. They find that small lines can be removed

by binarization then Gibbs denoising with character recon-

struction, and that big lines can be removed by Hough trans-

form based line finding followed by simple heuristics for

removing foreground pixels on Hough lines.

These attacks and other attacks on CAPTCHAs with line

noise, while successful on some of today’s popular

CAPTCHAs, use relatively simple image processing tech-

niques. To date, state of the art line noise removal techniques

have not been fully explored on CAPTCHAs. In the literature,

there exist a variety of scratch removal methods that re-

searchers have found useful for restoring old films and pho-

tographs. Some of these methods are appropriate for line and

curve removal from digital CAPTCHAs. Most include a detec-

tion phase and a removal phase. The detection phase for film

scratch removal consists of searching, among all vertical lines

in an images, for those that are not natural scene lines. This

stage may employ low or high pass filters (Kokaram et al.,

1995; Kokaram, 1998), morphological filters (Joyeux et al.,

2001; Saito et al., 2000), adaptive binarization (Kao and

Engehausen, 2000), discrete wavelet decomposition

(Bretscheneider et al., 2000), statistics and MAP techniques

(Geman and Geman, 1993; Morris et al., 1996; Tegolo and Isgro,

2001), local gradient measures (Anzalone and Machi, 2001),

Hough transforms (Machi et al., 2002), or Kalman filters

(Joyeux et al., 2002), possibly followed by Bayesian refinement

strategies (Kokaram, 1998). The result of the detection phase is

a binary scratch mask indicating which pixels in the original

frame are likely scratch pixels.

Many of these film restoration methods deal only with

vertical scratches introduced by mechanical rubbing while

copying a film (Kim and Kim, 2010; Maddalena and Petrosino,

2008), so they cannot be directly applied to CAPTCHAs, in

which line slopes are arbitrary. However, many can be

generalized and applied to attacking CAPTCHAs. One suitable

method is the Markov random field (MRF) or Gibbs algorithm

(Geman and Geman, 1993), which iteratively computes an

energy for each pixel based on the pixel’s surroundings,

removes pixels that have energy beyond a certain threshold,

and repeats until convergence. Bursztein et al. (2011) report

that line noise removal with their Gibbs implementation en-

ables them to achieve a total precision of 20% on Digg

http://dx.doi.org/10.1016/j.cose.2013.05.003
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CAPTCHAs, which contain dense cross hatching with small-

line noise.

Classical active contour models were introduced by Kass

et al. (1987), Cohen (1991) and Cohen and Cohen (1993). The

main drawback of the classical discrete point based repre-

sentation of active contours for CAPTCHA segmentation is its

lack of topological flexibility. In the case of CAPTCHAs, there

are multiple characters in the image, requiring manual

initialization of multiple contours or active methods able to

“break” contours into multiple pieces (Samadani, 1989;

Durkovich et al., 1995; Ngoi and Jia, 1999; Choi et al., 2001;

McInerney and Terzopoulos, 2000; Giraldi et al., 2003). Even if

contours are allowed to split and merge, we encounter the

problem that individual snakes can intersect themselves and

each other, requiring geometric constraints to prevent in-

tersections (Ivins and Porrill, 1995) or explicit detection and

handling of intersections (Wong et al., 1998; Ngoi and Jia, 1999;

Ji and Yan, 2002). This problem is especially troublesome

when nested snakes are initialized inside one another, but

this is exactly what is required in the case of character seg-

mentation, since many characters contain one (e.g. “O”) or

two (e.g. “B”) holes. Note that the number of internal bound-

aries is itself a very useful feature; for example, a correctly

segmented character containing two internal contours can be

only be an “8” or a “B.”

Given these considerations, we employ an approach based

on Xu and Prince’s gradient vector flow (Xu and Prince, 1997)

and Rochery’s quadratic active contours (Rochery et al., 2006)

endowed with efficient routines for splitting, merging, and

deletion of contours. The method incorporates quadratic

constraints (Rochery et al., 2006) to avoid self-intersections

and loops in individual snakes as well as to avoid intersec-

tion of snakes corresponding to different characters and their

internal boundaries. Themethod also exploits split andmerge

algorithms using straightforward conditions on the closeness

of non-adjacent contour points, providing the topological

adaptability of implicit geometric models without sacrificing

the simplicity, efficiency, or flexibility of traditional discrete

point sample based models. This simple gradient vector flow

representation can be easily modified to use other represen-

tations such as the generalized gradient vector flow (Xu and

Prince, 1998a) or the multi-direction GVF (Tang, 2009).

Once successful segmentation is achieved, as already

mentioned, any of a large variety of recognition algorithms

could be used. As examples, recognition rates on the pre-

segmented NIST handwritten digit database long ago

reached 98.5% using Fourier descriptors computed from the

digit contours (Cheng and Yan, 1998) and more recently

99.65% using large neural networks (Ciresan et al., 2010).
1 For light characters on a dark background, we simply negate
the term involving the image. In the rest of the paper, we assume
dark CAPTCHA characters on a light background.
3. Method

3.1. Quadratic snake model

This section provides a brief overview of the quadratic snake

proposed by Rochery et al. (2006). An active contour or snake is

parametrically defined as

gðpÞ ¼ ½ xðpÞ yðpÞ �T; (1)
where p is the curvilinear abscissa of the contour and the

vector ½ xðpÞ yðpÞ �T defines the Cartesian coordinates of the

point g( p).

The energy functional is given by

EsðgÞ ¼ EgðgÞ þ lEiðgÞ; (2)

where Eg(g) is the geometric energy and Ei(g) is the image energy

of the contour g. l is a free parameter determining the relative

importance of the two terms.

To apply the method to CAPTCHA segmentation with

certain widths, we define the geometric energy functional

to be

EgðgÞ ¼ LðgÞ þ aAðgÞ � b

2

ZZ
tðpÞ$tðp0ÞJðkgðpÞ � gðp0ÞkÞdpdp0;

(3)

where L(g) is the Euclidean length of g, A(g) is the area

enclosed by g, t( p) is the unit-length tangent to g at point p,

and JðzÞ, given the distance z between two points on the

contour, is used to weight the interaction between those two

points (see below). a and b are constantsweighting the relative

importance of the terms. The functional combines two linear,

Euclidean invariant terms: the contour’s area and its length.

The length term acts as a regularizer, whereas the area term

controls the expansion of the region. For positive b, Eg(g) is

minimized by contours with short length and parallel tan-

gents. If a is positive, contours with small enclosed area are

favored; if it is negative, contours with large enclosed area are

favored.

The third quadratic (also Euclidean invariant) term is

responsible for interactions between points on the snake. The

sigmoid functionJð$Þ defines the radius of the region inwhich

anti-parallel tangents should be discouraged:

JðzÞ ¼

8>>><
>>>:

1 if z < d� e;

0 if z > dþ e;

1
2

�
1� z� d

e
� 1
p
sinp

z� d
e

�
otherwise:

(4)

In application to CAPTCHA character extraction, d is the

approximate minimum character width and e expresses the

sharpness of the sigmoid part ofJð$Þ. During snake evolution,

weighting by JðzÞ in Equation (3) discourages two points with

anti-parallel tangents (the opposite sides of a putative char-

acter) from coming closer than distance d from each other.

The image energy functional Ei(g) is defined as

EiðgÞ ¼ �
Z

nðpÞ$VIðgðpÞÞdp; (5)

where I ¼ I(x, y) is the CAPTCHA-image n( p) is the unit-length

vector normal to g at point p, and VI(g( p)) is the gradient of I

evaluated at g( p).

This term favors anti-parallel normal and gradient vectors,

encouraging counterclockwise snakes to shrink around or

clockwise snakes to expand to enclose light regions sur-

rounded by dark CAPTCHA characters.1

http://dx.doi.org/10.1016/j.cose.2013.05.003
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To find a curve g minimizing Es(g), one obtains the Euler

equations using the calculus of variations. Introducing the

gradient descent method and ignoring flow in the direction

tangent to g, one obtains

nðpÞ$vg
vt

¼� kðpÞ � aþ lV2IðgðpÞÞ þ b

Z
rðgðpÞ;gðp0ÞÞ$nðp0ÞJ0

� ðkgðpÞ � gðp0ÞkÞdp0:

(6)

In the equation, k( p) is the curvature of g at g( p) and

V2I(g( p)) is the Laplacian of I evaluated at g( p). The vector

function r($,$) is the unit vector pointing from point gðp0Þ to-
wards g( p), defined by

rðgðpÞ;gðp0ÞÞ ¼ gðpÞ � gðp0Þ
kgðpÞ � gðp0Þk :

a, b, and l are free parameters that need to be determined

experimentally. d and ˛ are specified a priori according to the

desired CAPTCHA character width (essentially, if different

parts of the same snake become closer than a distance of

d from each other, they start repel each other).

Absent any image energy, the evolution generates a con-

tracting snake when the direction of the contour is counter-

clockwise and an expanding snake otherwise. A single snake

initialized at the image boundary will generally contract and

get attracted to the boundaries of the characters in the

CAPTCHA, then automatically split into several snakes cor-

responding to the individual characters.

Once the algorithm converges, that is, when the snakes

attach themselves to the boundaries of the character, we

generate anti-snakes by offsetting the original snakes by one

pixel inside the object. This enables us to extract the internal

boundaries in characters such as ‘O’ and ‘8’. For characters

that do not have internal boundaries, the anti-snake will

contract to a point and get deleted. The offset snake or anti-

snake follows the negative of the gradient. It moves through

dark regions and stops at a boundary with a light region.

Mathematically, our anti-snakes use the negative of the image

energy (Equation (5)).

The snakes and anti-snakes communicate through the

quadratic term in Equation (3). In order to prevent in-

tersections, anti-snakes require a change to the sign of the

parameter b. When the snake and anti-snake tangents point

in the same direction, a repelling force can be generatedwith a

negative b. To accomplish this, the quadratic term in Equation

(3) must be interpreted as follows: if p and p0 belong to the

same snake, use b > 0 otherwise use b < 0.

Finally, in a more general context, the procedure could be

used recursively to capture the structure of hierarchical

objects characterized by nested boundaries. Then the anti-

snakes would themselves generate further offspring. Howev-

er, in the case of character segmentation, only a two-level

hierarchy is required.
3.2. GVF external force

The term aA(g) in Equation (3) leads to the constant term�a in

Equation (6). This produces a contracting force similar to the

“balloon force” introduced by Cohen and Cohen (1993),
increasing the capture region around objects. Unfortunately

since this term does not take the image into account, it is

difficult to specify a value for a that is appropriate in all re-

gions of the image.

Xu and Prince (1997, 1998b), rather than using a global

balloon force, use a smooth, diffuse gradient field as a local

external force with the traditional linear snake. This gradient

vector flow (GVF) force improves the traditional snake’s

convergence to a minimum energy configuration. We use the

GVF with our quadratic CAPTCHA extraction snakes.

3.2.1. GVF
The GVF is a vector field Vðx; yÞ ¼ uðx; yÞ vðx; yÞ T minimizing

the energy functional

EðVÞ ¼
Z
U

m

�����vVðx; yÞvx

����
2

þ
����vVðx; yÞvy

����
2�

þ��V~Iðx; yÞ��2��Vðx; yÞ � V~Iðx; yÞ��2
dxdy; (7)

where ~I is a preprocessed version of image I, typically an edge

image of some kind. The first term encourages fidelity to V~I

whereas the second term encourages a smooth vector field. m

is a free parameter controlling the relative importance of the

two terms. Minimizing functional (7) leads to the Euler equa-

tion given by

mV2V � �
V � V~I

���V~I��2 ¼ 0: (8)

Equation (8) is then solved numerically by iterations. Alter-

natively, by replacing m in (8) with two weighting functions

depending on V~I to control the relative importance of the two

terms V2V and ðV � V~IÞkV~Ik2, we obtain the so-called general-

ized version of the GVF (Xu and Prince, 1998a).

In our approach, we obtain ~I using median filtering, ori-

ented filtering, and Canny edge detection. The oriented filters

are elongated Laplacian of Gaussian filters that emphasize

characters, suppress noise, and, to a certain extent, fill in

short gaps where characters have low contrast with the

background. The resulting binary Canny image includes in-

formation about the important edges that have survived

sharpening by the oriented filters. The GVF field on top of the

sharpened edge image points toward the character edges

from a long distance, and, during snake evolution, pushes the

snake in an appropriate direction. This GVF speeds evolution

and makes it easier to find suitable parameters to obtain fast

convergence.

3.2.2. Preprocessing by oriented filtering
Laplacian of Gaussian (LoG) filters are ideal for identifying

characters in CAPTCHA imagery. We use the linear response

of elongated LoG filters tuned to detect characters at 8 orien-

tations then (for dark characters with light surround) take the

maximum response over the 8 orientations. An example is

shown in Fig. 1.

Our convolution and minimum response selection proce-

dure responds well to long straight edges having the effect of

emphasizing linear parts of the characters and deemphasiz-

ing thin line noise, and, to a certain extent, filling in short gaps

where a character has low contrast with the background or

was broken by the line noise.

http://dx.doi.org/10.1016/j.cose.2013.05.003
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Fig. 1 e Preprocessing by oriented filtering. (a) Original image. (b) Median-filtered image. (c) Oriented-filter masks.

(d) Oriented-filtered image.
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3.2.3. Obtaining the GVF field
After oriented filtering, we obtain the Canny edge image ~I

from the edge-enhanced image obtained from oriented

filtering. This is the input to the GVF relaxation procedure (Xu

and Prince, 1997). We precalculate V before snake evolution

begins, then, similar to Xu and Prince, during evolution, for

each point g( p), we add the force lGVF n( p)$V(g( p)) directly to

the update Equation (6). lGVF is a weight trading off the

importance of the GVF force against the other forces in

Equation (6).

Clearly, this encourages the snake to snap to the character

contours, where ideally V(g( p)) ¼ 0.

The experimental results reported in this paper show that

by combining the advantages of the GVF’s extended capture

range and the quadratic snake’s flexibility, the method

improves the snake’s convergence to configurations that

accurately segment structures (see Fig. 2).

3.3. Family of quadratic snakes

A single quadratic snake (Rochery et al., 2006) is unable to

extract enclosed regions and multiple disconnected
Fig. 2 e Snake-based extraction with GVF. (a) GVF vector field
characters in an image. We address this limitation by intro-

ducing a family of cooperating snakes that are able to split,

generate offspring (anti-snakes), disappear, and merge if

necessary (see Fig. 3).

In our formulation, due to the curvature term k( p) and the

area constant a in Equation (6), specifying the points on g in a

counterclockwise direction creates a shrinking snake, whereas

specifying the points on g in a clockwise direction creates a

growing snake.

3.3.1. Splitting a snake
Ourmethod splits a snake into two snakeswhenever two of its

arms are squeezed too close together, i.e., when the distance

between two snake points is less than dsplit and those two

points are at least k snake points from each other in both di-

rections of traversal around the contour (see Fig. 3(a) for an

example). dsplit should be less than 2h, where h is the

maximum step size.

3.3.2. Deleting a snake
A snake g is deleted if it has perimeter less than Ldelete. Fig. 3(c)

shows an example of a snake being deleted.
. (b) Converging snake. (c) Successfully converged snake.

http://dx.doi.org/10.1016/j.cose.2013.05.003
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Fig. 3 e Cooperating snakes. (a) A shrinking snake splits into two snakes and finally captures two distant objects. (b) Two

merging snakes. (c) Two shrinking snakes, one of which has been deleted after reaching a minimally allowed length.
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3.3.3. Generating the anti-snake
The evolution of the snake continues until it either attaches

itself to a boundary of the character or gets deleted. In the first

case an anti-snake is generated by offsetting the original

snake by several pixels inside the object.

This is done to extract characters characterized by internal

boundaries. If the character does not have an internal

boundary, the anti-snake converges to a point and gets

deleted.

The offsetting is performed in the direction of the normal.

Since several points in the original snake can be mapped into

the same point in the offset snake, a re-parametrization of the

offset snake must be performed.

3.3.4. Merging two snakes
Although merging two or more snakes is technically possible,

the CAPTCHA-defeating snakes do not require this operation.

However, this element should be included in general purpose

segmentations.
4. Experiments

4.1. Experiment 1: CAPTCHA segmentation and
recognition by multiple quadratic snakes

In Experiment 1, we evaluate the performance of our multiple

quadratic snake method at defeating color CAPTCHAs
subjected to a combination of line and salt-and-pepper noise.

The multiple snake model is compared with a pixel-tracing

contour extraction algorithm (Suzuki and Abe, 1985) avail-

able in the OpenCV library (Bradski and Kaehler, 2008).

4.1.1. CAPTCHA data sets and evaluation methods
The efficiency of each algorithm is evaluated pixel-wise in

terms of the precision (fraction of the retrieved pixels that are

character pixels), recall (fraction of character pixels that are

retrieved), and F1 (the harmonic mean of the precision and

recall).

We also evaluate the extractions by means of the recog-

nition rate (per character and per CAPTCHA). The experiments

show that snakes produce almost the same pixel-wise accu-

racy and a slightly higher recognition rate than the OpenCV

contour extraction algorithm. However, it is not hard to create

readable CAPTCHAs that cannot be binarized appropriately

for the contour-tracing procedure. Since snakes do not require

image binarization, this method has the leading advantage.

Comparison between Figs. 2 and 4 exemplifies the special

convenience of the snake-based method.

To create theCAPTCHA image set used for the experiments,

we used the popular Drupal CAPTCHA API (Version 6.x-2.4)

(Drupal CAPTCHA project, 2012), which produces CAPTCHAs

characterized by distortion and tilting of the characters fol-

lowed by the addition of line and salt-and-pepper noise. Each

CAPTCHA is a 480 � 160 image containing five characters. The

averagemeasurednoise levels in termsof signal-to-noise ratio

http://dx.doi.org/10.1016/j.cose.2013.05.003
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Fig. 4 e Otsu-thresholding an image with low contrast regions. (a) Original image. (b) Otsu-thresholded image. (c) Contours

found by the standard OpenCV tracing algorithm.
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(SNR) are 6.2 dB, 4.1 dB, and 3.0 dB for salt-and-pepper, line,

and combined salt-pepper-line noise, respectively. Table 1

compares the noise levels of our test CAPTCHAs with

CAPTCHAs employed by some prominent websites. LN stands

for line noise and S&P stands for salt-and-pepper noise.

Clearly, the noise levels in the CAPTCHAs used in our experi-

mentsare comparablewith thoseofprominentCAPTCHAs. For

instance, the S&P þ LN CAPTCHAs used in Experiment 1 are

characterized by a high level of noise similar to that of Digg.

com.

Our first experiment involves three conditions, 1)

CAPTCHAswith line noise, 2) CAPTCHAswith salt-and-pepper

noise, and 3) CAPTCHAs with combined line and salt-and-

pepper noise. The characters and the noise were generated

using randomly selected colors. For each type of noise, 10 RGB

images were generated by the CAPTCHA API and converted

into gray level using the red color channel. The results for the

green and blue channels are similar and therefore omitted. In

each condition, we tested the snake based extraction method

against the ground truth segmentation and the OpenCV

contour-tracing method. The performance measures, as pre-

viously mentioned, were per-pixel precision, recall, and F1.
Table 1 e Noise levels in various CAPTCHAs.

CAPTCHA Noise (dB) CAPTCHA Noise (dB)

Digg 2.9 NIH 6.3

S&P þ LN

(Experiment 1)

3.0 LN-low

(Experiment 2)

6.5

LN (Experiment 1) 4.1 CNN 7.9

Blizzard 4.1 Wikipedia 8.1

LN-high

(Experiment 2)

4.4 Baidu 8.3

Captcha.net 5.0 MSN 8.4

LN-medium

(Experiment 2 and 3)

5.2 Skyrock 10.1

Slashdot 5.4

Authorize 5.8

S&P (Experiment 1) 6.2
The second experiment tests CAPTCHA recognition rates

for the two algorithms. Each algorithm ran against 1000

CAPTCHAs distorted by combined noise. To exclude ambig-

uous cases such as “c” and “C”, “l” and “1”, the CAPTCHAs

were generated from the set {A, a, C, d, E, e, F, G, H, h, K, L, M,

m, N, P, R, r, T, W, X, Y, Z, 3, 4, 7, 9}. This follows the recom-

mendations of the seminal work of Bursztein et al. (2011), who

performed an extensive series of experiments on how char-

acter set selection affects human and machine recognition of

character CAPTCHAs and, based on the experiments, recom-

mended to “use a small non-confusable charset: while using a

larger charset slightly impacts classifier accuracy and de-

creases the scheme’s learnability, the security gain is too

small to be useful: forcing the attacker to learn on 40

CAPTCHAs instead of 10 reduces the accuracy from 100% to

92% which is negligible compared to the loss in human ac-

curacy (98% for 0e9 down to 82% for azAZ09). Accordingly,

since increasing the charset does not offer a significant se-

curity gain, a CAPTCHA charset should be small ... and should

not contain confusing letters.”

We evaluate extraction by means of the recognition rate

per character and per CAPTCHA. Recognition is performed by

two different routines: an inexpensive commercial OCR

package (Transym, 2012) utilizing an untrained classifier, and

an SVM-based custom-trained classifier. One thousand

different CAPTCHAs were used as a training data set (see

Section 4.1.5, forthcoming).

The goals of the experiment are first to compare the snake-

based and contour tracing-based segmentation methods in

terms of recognition rate, and second to evaluate the vulner-

ability of this particular CAPTCHA family to attack. Given that

“a CAPTCHA scheme [is] broken when the attacker is able to

reach a precision of at least 1%” (Bursztein et al., 2011), our

experimentswill show that based on good segmentation, even

a simple untrained OCR system is able to break the line noise

CAPTCHA scheme.

4.1.2. Preprocessing
We subjected each of the original CAPTCHA images to a pre-

processing step used by both the multi-snake algorithm and

http://Digg.com
http://Digg.com
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the pixel-tracing methods. The preprocessing algorithm first

converts each original RGB image into a grayscale image by

taking the red channel. In order to perform the binarization

required by the OpenCV tracing methods, assuming that

characters have lower intensity than the light background, the

method applies a median filter to remove salt-and-pepper

distortion and/or small isolated dark blobs created by the

line noise process. Finally, the method applies oriented filters

optimized for the enhancement of the CAPTCHA characters

by adjusting sx and sy (the standard deviations of the elon-

gated Gaussian). Generally, setting sx to the approximate

stroke width and sy to 1.2e3.0 times larger than sx yields

excellent filtering results.

4.1.3. Contour-tracing and multi-snake approaches
Here we explain the two independent methods used in the

CAPTCHA segmentation step:

� Contour-tracing algorithm: We employ the Otsu thresh-

olding technique to binarize the grayscale image. Note that

the test CAPTCHA images have sufficient contrast for suc-

cessful binarization (a low contrast case is exemplified in

Fig. 4). Finally, we apply the contour-tracing algorithm

(Rosenfeld and Pfaltz, 1966) to the binarized image. Con-

tours characterized by small length are deleted. The contour

tracing method implemented by OpenCV (Rosenfeld and

Pfaltz, 1966) is a generalization of a classical contour

tracing method (Suzuki and Abe, 1985) to handle multiple

contours. For each black pixel, the four neighboring points

are examined. If none of these neighbors has a black point

label, the point is assigned a new label. Otherwise, labels

carried by the neighbors are said to be equivalent and the

label of the point in question is replaced by the minimal

equivalent label. The extended version of the contour-

following algorithm discriminates between external and

internal contours. The algorithm assigns a unique mark to

each contour using a special procedure for obtaining the

parent contour of the currently followed contour.

� Multi-snake algorithm: We hand-tuned the free parameters

of the snake model to achieve the best possible results. The

optimal values of themodel parameters are given in Table 2.

Parameters a, b, l, lGVF, d, and e are related to snake evolu-

tion, whereas d and e are parameters of the sigmoid function

(4). Note that although large a facilitates avoidance of noise

spots, care should be taken not to overwhelm the contri-

bution of the GVF, weighted by lGVF. Furthermore, b repre-

sents the relative importance of the quadratic terms.

Therefore, if self-intersections and intersections of snakes

and anti-snakes are possible, b must be large enough to

prevent them. In our case, the quadratic terms are impor-

tant since self-intersections often occur when linear snakes

are employed. Finally, l defines the total contribution of the

image energy in the variational functional (2). Therefore,
Table 2 e Optimal parameters for the snake model.

Parameter sx sy a b l lGVF d e

Value 8.0 11.9 40 16.5 1.2 6.0 10.5 0.45
optimization of l and bmust be performed concurrently.We

have found that l ¼ 1.2 and b ¼ 16.5 guarantee good

extraction results. Contour evolution is terminated when-

ever the energy Es(g) fails to decrease for some number of

iterations. Finally, we achieved O(N$log N ) complexity for

each iteration of quadratic snake evolution, where N is the

total number of the snake points, by optimizing search for

neighboring contour points.

4.1.4. TOCR for CAPTCHA character recognition
In the preference menu provided by the software package, we

limited the scope of allowed characters to those actually used

in our CAPTCHA samples.

Using the software’s batch interface, in each batch, we

supplied 100 preprocessed CAPTCHA images to the software

and applied recognition. We repeated the same procedure 10

times for each different image set with 100 CAPTCHAs, finally

obtaining the recognition results of 1000 CAPTCHAs.

4.1.5. SVM for CAPTCHA character recognition
We compare the ability of TOCR’s untrained recognition to

that of a custom-trained SVM. To this end, 1000 noiseless

CAPTCHAs were collected and broken manually into 5000

patches, with each patch containing exactly one character.

This constituted a training set of 5000 character images over

27 classes, which is quite limited. Therefore, we expanded the

training set by adding normal printed characters from scan-

ned documents of 300 DPI or more. To model CAPTCHA of the

scanned characters that were large enough, we added elastic

distortion as described by Jain et al. (1996) to produce new

training examples.

Inparticular, givena character image I,wefirst compute, for

each position (x, y), amotion vector ½uðx; yÞ vðx; yÞ � as follows:

uðx; yÞ ¼
XM
m¼1

XN
n¼1

1
lm;n

am;n2 sinðpnxÞcosðpmyÞ (9)

vðx; yÞ ¼
XM
m¼1

XN
n¼1

1
lm;n

bm;n2 cosðpnxÞsinðpmyÞ; (10)

where am,n and bm,n are chosen randomly according to a

Gaussian distribution with zero mean and unit variance, i.e.

am;n;bm;nwN ð0; 1Þ. The normalizing constant lm,n was experi-

mentally set to 0.01p2(n2þm2). A distorted version of an image

I, denoted I0, is then

I0ðx; yÞ ¼ Iðxþ uðx; yÞ; yþ vðx; yÞÞ: (11)

Fig. 5 shows an example of a character and three random

distortions. In total, we computed a training set of 97,165

character images.
Fig. 5 e Example of a printed character (a), and three

distorted versions (b, c, and d).
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Each character image was scaled to a size of 30 � 30 pixels

while preserving the aspect ratio of the original image.

Then each character image was converted into a vector of

pixel intensities. This resulted in a feature vector of 900 di-

mensions for each character. We used an RBF kernel with

width parameter (g) experimentally set to 0.0001.

After the training phase, an SVM with nearly 15,000 sup-

port vectors was obtained. This is a quite large model, as one

might expect, since the feature space relies only on pixel in-

tensity and a generic kernel function not designed to deal

with character distortion. The variability produced by the

distortion function is handled implicitly via the large number

of support vectors. We believe that a better feature space or

kernel could yield a more concise model; this will be investi-

gated in future work.

4.1.6. Numerical results
Tables 3e5 present the results of the first numerical experi-

ment, that is, the pixel-wise extraction of CAPTCHAs corrup-

ted by the three noise modes (Figs. 6e8).

The extraction results show similar trends across all types

of noise. We observe that the snake-based algorithm in all

cases performs better in terms of recall. In precision, the

contour-tracing algorithm displays a slight advantage over

the snake-based algorithm. To determine the significance of

the overall averaged F1 results, we performed paired two-

tailed t-tests for a significant difference in F1 between the

snake-based and contour tracing-based methods. The differ-

ences were significant at a ¼ 0.05 for all three noise condi-

tions, with the direction of difference favoring the snake-

based method.

The most important measure of attack effectiveness is the

actual recognition rates under each algorithm. In the second

experiment, we processed the 1000 5-letter CAPTCHAs by a

simple untrained OCR (Transym, 2012) and a customized

SVM-based classifier, trained using a different set of 1000

CAPTCHAs. The results are presented in Table 6. The multi-

snake algorithm followed by Transym OCR recognizes 9% of

the CAPTCHAs, whereas the OpenCV method combined with

Transym OCR recognizes 8%. This is far beyond the 1% rate

required for a successful attack. Note that the same OCR

system applied directly to the raw images failed to break a

single CAPTCHA. As far as the SVM method is concerned, the

trained classifier produces 70% and 73% recognition rates with
Table 3 e Segmentation of CAPTCHAs with line noise in Expe

CAPTCHA Recall (snakes) Recall (OpenCV) Precision (

Line noise 1 0.90 0.86 0.89

Line noise 2 0.90 0.86 0.90

Line noise 3 0.86 0.82 0.88

Line noise 4 0.91 0.87 0.89

Line noise 5 0.80 0.76 0.87

Line noise 6 0.79 0.74 0.86

Line noise 7 0.77 0.72 0.83

Line noise 8 0.84 0.79 0.89

Line noise 9 0.82 0.77 0.88

Line noise 10 0.74 0.80 0.82

Mean 0.83 0.79 0.87
characterwise rates of 92% and 93% for the OpenCV and

snake-based segmentation, respectively.

Clearly, such recognition rates are sufficient for a suc-

cessful attack. Moreover, the recognition rate for the SVM

classifier combinedwith snakes (73%) is much higher than the

20% achieved by the Gibbs algorithm on similar data

(Bursztein et al., 2011).

Note that the CAPTCHA recognition rate with snake based

segmentation is 1% higher than that with OpenCVwhen using

the untrained OCR system. A 1% improvement is a large

relative improvement in the case of an attack applying an

untrained classifier with relatively low recognition rates.

Finally, since the snake-based method does not require

binarization, its advantages could be better exploited,

whereas high contrast CAPTCHA characters could be effi-

ciently extracted using either the OpenCV tracer or snake-

based algorithm.

4.2. Experiment 2: line noise and human recognition

Ideally, Web masters should employ CAPTCHAs that are

trivial for humans and totally unbreakable by computers. Do

such CAPTCHAs exist? This paper does not answer this

question, but it offers a relevant discussion as well as results

of experiments on human recognition of the line noise

CAPTCHAs used in Experiment 1.

It is easy to create a character recognition task that is

difficult for humans and easy for computers. For instance,

consider a noiseless image with a background gray level 0 (of

255) and printed letters represented by a gray level of 1. Such

characters (invisible for humans) are easily binarizable. The

computer recognition rate would likely be close to 100%, while

the human recognition rate would be at chance. Therefore,

making CAPTCHAs increasingly difficult for humans does not

necessarily make them more difficult for computers.

The CAPTCHA proposition rests on the contrary assump-

tion, that with the right kind of noise, it should be possible to

design a CAPTCHA that is easy for humans and hard for

computers. Finding the right kind of noise and the right level

of noise is difficult, however, because the CAPTCHA must be

quick and easy for the human to solve. CAPTCHAs that are

time consuming or impose a heavy mental load represent

inconvenience for the user. Any Web master would thus be

cautious to offer CAPTCHAs that are too difficult d stressing
riment 1.

snakes) Precision (OpenCV) F1 (snakes) F1 (OpenCV)

0.92 0.89 0.89

0.92 0.90 0.89

0.94 0.91 0.88

0.91 0.87 0.89

0.96 0.93 0.85

0.97 0.93 0.84

0.92 0.90 0.81

0.97 0.94 0.87

0.95 0.93 0.85

0.96 0.94 0.87

0.94 0.91 0.86
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Table 4 e Segmentation of CAPTCHAs with salt-and-pepper noise in Experiment 1.

CAPTCHA Recall (snakes) Recall (OpenCV) Precision (snakes) Precision (OpenCV) F1 (snakes) F1 (OpenCV)

Salt-and-pepper noise 1 0.88 0.83 0.89 0.93 0.90 0.88

Salt-and-pepper noise 2 0.89 0.86 0.87 0.89 0.85 0.87

Salt-and-pepper noise 3 0.85 0.80 0.88 0.95 0.91 0.87

Salt-and-pepper noise 4 0.83 0.78 0.88 0.96 0.94 0.86

Salt-and-pepper noise 5 0.84 0.80 0.89 0.96 0.93 0.87

Salt-and-pepper noise 6 0.86 0.82 0.88 0.94 0.91 0.88

Salt-and-pepper noise 7 0.85 0.80 0.88 0.95 0.93 0.87

Salt-and-pepper noise 8 0.87 0.83 0.89 0.95 0.91 0.88

Salt-and-pepper noise 9 0.82 0.77 0.88 0.95 0.91 0.85

Salt-and-pepper noise 10 0.86 0.83 0.89 0.94 0.90 0.88

Mean 0.85 0.81 0.88 0.94 0.90 0.87
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their users’ cognitive and vision systems will make potential

customers walk away.

As previously introduced, Table 1 on page 16 displays noise

levels of our test CAPTCHAs vs. CAPTCHAs offered by some

prominent websites (see also Bursztein et al., 2010). Clearly,

the noise levels in our test CAPTCHAs are comparable to those

of other CAPTCHAs. The salt-and-pepper plus line noise

CAPTCHAs used in Experiment 1 have a SNR of 3.0 dB, which is

lower than any other CAPTCHA except Digg’s, which has a

SNR of 2.9 dB. The “LN-high” CAPTCHAs presented to humans

in the present experiment also contain more noise than the

majority of the sampled CAPTCHAs. This shows that our

CAPTCHAs are already very near the boundary beyond which

Web designers believe they will lose users.

However, beyond looking at signal-to-noise ratios, how can

we determine how comfortable a user will be with a particular

CAPTCHA?Very few research papers have addressed this issue.

Following the long tradition of psychological studies of human

visual perception (Palmer, 1999), it is possible to record users’

speed and accuracy in judging CAPTCHAs. Increased time or

decreasedaccuracy in solvingCAPTCHAswould indicatehigher

mental loads and consequently more user dissatisfaction.

Lee and Hsu (2011) have further suggested a more direct

method to measure users’ comfort in solving CAPTCHAs:

NASA’s TLX scoring system (NASA, 2013). NASA-TLX obtains

humans subjective judgments of a task’s difficulty along six

dimensions: the mental, physical, and temporal demand

imposed by the task, as well as the user’s perception of their
Table 5 e Segmentation of CAPTCHAs with combined line and

CAPTCHA Recall (snakes) Recall (OpenCV) Precisio

Combined noise 1 0.85 0.81 0

Combined noise 2 0.87 0.83 0

Combined noise 3 0.75 0.71 0

Combined noise 4 0.85 0.81 0

Combined noise 5 0.85 0.80 0

Combined noise 6 0.84 0.79 0

Combined noise 7 0.85 0.81 0

Combined noise 8 0.77 0.71 0

Combined noise 9 0.86 0.82 0

Combined noise 10 0.84 0.78 0

Mean 0.83 0.78 0
own performance, the effort required, and their frustration

with the task.

Three groups consisting of 25, 17, and 16 students at the

Sirindhorn International Institute of Technology in Thailand

were recruited for the study. Each user was asked to solve 40

CAPTCHAs. Each group’s CAPTCHAs were characterized by a

different level of line noise as follows: LN-low (6.5 dB), LN-

medium (5.2 dB), or LN-high (4.4 dB). Response time and ac-

curacy were recorded automatically during the session. Once

the session was completed, each participant assessed the

subjective workload using the standard NASA-TLX question-

naire (translated into Thai).

Table 7 shows the speed-accuracy results, and Table 8

shows the TLX results. We hypothesized a linear relation-

ship between noise level and each dependent measure. We

tested each hypothesis using the Matlab linhyptest routine

(MathWorks, 2013) and retained any dependent parameters

with p � 0.2. Table 8 shows the results. Mental stress, sub-

jective performance, and effort were increasingly worse

(stress and effort increased and users’ subjective performance

decreased) as the noise level increased. The trends for the

other variables were not statistically significant.

Based on the SNR estimates and the linear relationship

between line noise levels and human mental load, we

conclude that the CAPTCHAs used in this study, while “easy”

for automated attacks, are already near the threshold of being

“too hard” for humans. Clearly, then, Web designers should

not simply increase the levels of line noise in their CAPTCHAs
salt-and-pepper noise in Experiment 1.

n (snakes) Precision (OpenCV) F1 (snakes) F1 (OpenCV)

.88 0.93 0.91 0.87

.88 0.91 0.87 0.87

.81 0.90 0.87 0.79

.87 0.91 0.90 0.85

.87 0.93 0.90 0.86

.88 0.94 0.92 0.86

.88 0.92 0.91 0.86

.84 0.96 0.94 0.82

.87 0.90 0.87 0.86

.85 0.89 0.87 0.83

.86 0.91 0.89 0.84
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Fig. 6 e Segmentation of CAPTCHAs with line noise in Experiment 1. (a) Original image. (b) OpenCV. (c) Snakes.
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Fig. 7 e Segmentation of CAPTCHAs with salt-and-pepper noise in Experiment 1. (a) Original image. (b) OpenCV. (c) Snakes.
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Fig. 8 e Segmentation of CAPTCHAs with combined line and salt-and-pepper noise in Experiment 1. (a) Original image.

(b) OpenCV. (c) Snakes.
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Table 6e Recognition rates for CAPTCHAswith combined
line and salt and pepper noise in Experiment 1.

Algorithm Recognition
per character

Recognition
per CAPTCHA

OpenCV þ OCR 0.59 0.08

OpenCV þ SVM 0.92 0.70

Snakes þ OCR 0.60 0.09

Snakes þ SVM 0.93 0.73

Table 8 e NASA TLX scores vs. noise level in Experiment
2.

NASA TLX dimension LN-low LN-medium LN-high

Mental demand 7.48 8.47 11.00

Performance 5.92 6.94 8.00

Effort 10.36 11.05 12.81
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to defeat automated attacks d this would surely turn users

away.

In the next section, we go further to demonstrate that the

snake-based segmentation method is also robust to a third

type of noise, a sophisticated anti-binarization technique that

defeats existing methods (Gao et al., 2012; Yan and Ahmad,

2008) based on binarization and splitting the image into

blocks.

4.3. Experiment 3: snakes and anti-binarization

Several efficient CAPTCHA-solvers are based on intensity

histograms and image binarization. For instance, Yan and

Ahmad’s (2008) algorithm projects the cumulative intensity

of each column of the CAPTCHA image onto the horizontal

axis to obtain a horizontal histogram. The character locations

are estimated as the peaks of the histogram, then they are

separated and recognized. A more recent attack on Yahoo!

CAPTCHAs (Gao et al., 2012) employs projections of the image

intensities onto the vertical and horizontal axis. The hori-

zontal projection is used for segmentation of the first and the

last character in the group. This (CAPTCHA-dependent)

method uses insights obtained from analysis of the particular

anti-segmentation techniques used by Yahoo!, but like Yan

and Ahmad’s algorithm, intensity projection is the central

idea of the algorithm.

Appropriate anti-binarization techniques based on variable

backgrounds can provide a powerful defense against such

projectionmethods. Distorting the background can transform

the intensity histograms in such a way that the characters

become inseparable. One such anti-binarization technique is

used by the Blizzard.net CAPTCHA (Blizzard.net, 2012); this

CAPTCHA employs random backgrounds generated from

game screenshots as an attempt to prevent attack software

from learning and exploiting common background structure.

While random screenshots may not be the best choice

(Bursztein et al., 2010), if the background and character pixels

have substantially overlapping intensity distributions,

projection-based methods will be defeated.

The goal of anti-binarization is to prevent CAPTCHA

solvers from using binarization to find gaps between
Table 7 e Response time and accuracy vs. noise level in
Experiment 2.

Measure LN-low LN-medium LN-high

Average response time (s) 6.61 7.14 7.28

Average accuracy 0.938 0.925 0.937
characters along which the image can be split into blocks

containing exactly one character. If the background image is

represented by B(x, y) and the overlaid character image by C(x,

y). Roughly speaking, human recognition of the CAPTCHA

requires that for every point (x, y) for which C(x, y) has a value,

we require that jB(x, y) � C(x, y)j > d, where d is the minimal

difference between the background and the text providing

human recognition. As long as this constraint is met, the

designer is free to manipulate the intensity distributions of

B(x, y) and C(x, y) to defeat projection methods. For example,

the CAPTCHA could combine dark characters on a light

background and light characters on a dark background.

In Experiment 3, three algorithms are applied to anti-

binarized CAPTCHAs: the snake-based method, the vertical

projection method (Yan and Ahmad, 2008), and the contour

tracing method. The experiment will show that methods

based on projection and contour tracing fail, whereas the

snake-based method produces sufficiently accurate segmen-

tations to defeat the CAPTCHA.

The main advantage of the snake-based method is that it

does not rely on particular values of gray levels. The snake is

attracted by any gradient at the boundary between the char-

acter and background, irrespective of the overall distribution

of foreground and background intensities. Even if the

CAPTCHA includes both dark characters on a light background

and light characters on a dark background, as long as there is a

gradient, the snake will always find them.

We generated CAPTCHAs similar to those analyzed in Ex-

periments 1 and 2 except that the background is generated

according to B(x, y)h B(x) ¼ A cos(nwpx/L). L is the width of the

CAPTCHA image (480 currently), A is the amplitude of the

cosine wave, and nw is the number of waves. We select the

foreground intensity C(x, y) h C(x) randomly so that d � 40

(weak contrast) and d � 60 (medium contrast). As in Experi-

ments 1 and 2, the characters are tilted and distortedwith line

noise (LN-medium, Table 1) by the Drupal CAPTCHA generator

(Drupal CAPTCHA project, 2012).

To make it possible to compare the results of the three

algorithms, we modify them slightly. To be fair to projection

algorithm, which does not employ oriented filtering, we

remove the oriented filtering step from our algorithm, so that

all methods work directly on raw, non-preprocessed images.

(Another reason not to use oriented filters is that they require

knowledge of the average width of the characters, and this

information might not always be available to the attacker.)

Since the problem of short arc-like noise has been success-

fully solved by Yan and Ahmad (2008), we do not include this

type of distortion. In all three cases, we followYan andAhmad

(2008), placing vertical segmentation lines across the image

and considering the CAPTCHA solved if it is successfully

partitioned into blocks each containing exactly one character.

http://Blizzard.net
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Table 9 e Accuracy of per-character partition in
Experiment 3.

Contrast level Snakes Projection Contour tracing

Medium 0.757 0.715 0.557

Low 0.852 0.189 0.178
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The snake-based segmentationmethod consists of placing

an initial snake around the boundary of the image, letting the

contour evolve to convergence, binarizing the result, and

splitting the image as follows. The algorithm finds large seg-

ments of the histogram with a low pixel count and removes

the corresponding parts from the CAPTCHA. The remaining

parts of the image contain only one character (see Fig. 9(a)).

The projection algorithm obtains the horizontal histogram

after binarization by the Otsumethod, and then segments the

image using the same approach. The OpenCV method per-

forms Otzu binarization then contour tracing and final

binarization of the resulting regions.

We evaluate each algorithm according to the number of

solved CAPTCHAs as well as the number of correct separating

lines. Tables 9 and 10 demonstrate that the proposed anti-

binarization techniques defeat the projection-based and the

contour-tracing method. However, the snake-based method

performs extremely well, even when the variable background

is combined with a high level of noise.

Note that the accuracy increase for the low contrast is due

to a particular interplay between the line noise and the anti-

binarization. A low contrast between the line noise and the

background allows the snake to easily pass the noise. On the

other hand, itmakes itmore difficult to attach the snake to the

exact boundary of the character. The interaction between the
Fig. 9 e Solving anti-binarized CAPTCHAs in Experiment 3. (a) S

(failed). (c) Contour tracing method (failed).
two forces may result in a higher accuracy for a lower

contrast.

Fig. 9 illustrates the advantage of the snake-based method.

A strong consistent gradient between the background and

foregroundwould allow for an appropriate Otsu threshold and

consequently for accurate partitioning. However, with weak

contrast, cosine wave distortion of the background, and line

noise, the horizontal histogram no longer discriminates

background from foreground, defeating the projection and

contour-tracing techniques.

Note that the snake-based method need not generate a

single contour for each character. In some cases, when the

noise is high, the method produces a collection of contours

attached to a single character. However, once the image is

binarized according to these contours then projected onto the

horizontal axis, the method is quite successful at horizontally

separating the challenge image into chunks.
uccessful snake-based segmentation. (b) Projection method

http://dx.doi.org/10.1016/j.cose.2013.05.003
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Table 10 e Accuracy of per-CAPTCHA partition in
Experiment 3.

Contrast level Snakes Projection Contour tracing

Medium 0.578 0.421 0.263

Low 0.684 0 0
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Note also that the anti-binarization technique used in this

experiment has been simplified to illustrate the idea. To

ensure that CAPTCHA solves could not learn and exploit a

static backgroundeforeground structure, functions B(x, y) and

C(x, y) could be randomized subject to the aforementioned

condition that jB(x, y) � C(x, y)j > d where C(x, y) is defined.

Finally, it may be possible to use the projection method

with multiple thresholds to separate characters, but this

would require a more sophisticated algorithm that would

critically depend on the size of the sampling window (Sauvola

and Pietikinen, 2000).
5. Impact of the research on defeating
CAPTCHAs

Recent advances in image processing and computer vision

have contributed significantly to the improvement of data

security, for example through online verification technologies

such as fingerprint verification and other biometric proofs of

identity. However, the same or similar methods can be

employed to attack and break security protocols. Therefore,

more effort is needed to bring the security and image pro-

cessing communities together to produce interdisciplinary

research that combines methods from the two flourishing

disciplines to attack cybercrime.

As far as snake-based CAPTCHA recognition is concerned,

for the time being, algorithms requiring solution of partial

derivative equations are not available to the average hacker.

Exploiting the techniques presented in this paper require

knowledge of computational mathematics and image pro-

cessing. However, there is a long tradition in the hacking

community of advanced attacks being compiled into easy-to-

use scripts or placed online as services. GVF-snakes are

already automated. Very soon, individuals with little technical

skill will be able to easily apply these techniques to bypass

throttling mechanisms and expand their spam, Trojan, virus,

and phishing campaigns. As long as visual text CAPTCHAs

remain the most popular software bot throttling tool, new

CAPTCHAs must be tested against state-of-the-art image

processing methods such as snake-based segmentation and

SVM-based OCR, lest criminal activity on the Internet further

accelerate.
6. Conclusions

We have shown that multiple interacting quadratic active

contours are effective at defeating the line noise CAPTCHAs

currently being used by many commercial websites. Our nu-

merical experiments performed against a series of CAPTCHAs
with line and salt-and-pepper noise display 0.83 precision,

0.86 recall, and 0.89 F1.

Pattern recognition performed by means of a standard,

untrained OCR software package applied to the resulting con-

tours produces 9% recognition rates, whereas the same OCR

routine applied to the “raw” CAPTCHAs fails to break even a

single CAPTCHA from 1000 samples. The recognition rate for

the SVM classifier combined with snakes (73%) is much higher

than the 20% achieved by the Gibbs algorithm on similar data.

The test CAPTCHAs are typical in terms of the average

noise represented by thin lines and the salt-and-pepper

distortion. The line-noise applied to the test CAPTCHAs

makes them more difficult for humans and increases their

discomfort, as measured in terms of NASA-TLX scores.

The competing technique that comprises binarization and

contour tracing using standard OpenCV functions produces

similar results when applied to high-contrast CAPTCHAs.

However, an anti-segmentation method based on contrast

reduction and varying backgrounds defeats the OpenCV

contour-tracing as well as methods based on vertical projec-

tion (horizontal histograms).

Finally, further improvements in accuracy are no doubt

possible. However, the achieved levels of accuracy and

recognition are sufficient to defeat the studied type of digital

CAPTCHAs. Therefore, CAPTCHA segmentation under condi-

tions of line noise should be considered a solved problem.

CAPTCHA designers should introduce more challenging dis-

tortions into their CAPTCHAs, lest the security of systems

based on them be compromised.
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