
Numerical experiments on the accuracy

of rotation moments invariants

S. Rodtook*, S.S. Makhanov

Information Technology Program, Sirindhorn International Institute of Technology,

Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand

Received 30 January 2004; received in revised form 30 December 2004; accepted 2 February 2005

Abstract

Rotationally invariant moments constitute important techniques applicable to a versatile number of pattern recognition applications.

Although the moments are invariant with regard to spatial transformations, in practice, due to the finite screen resolution, the spatial

transformation themselves affect the invariance. This phenomenon jeopardizes the quality of pattern recognition. Therefore, this paper

presents an experimental analysis of the accuracy and efficiency of discrimination under the impact of the most important spatial

transformations such as rotation and scaling. We evaluate experimentally the impact of the noise induced by the spatial transformations on

the most popular basis functions such as Zernike polynomials, Mellin polynomials and wavelets. The analysis reveals that the wavelet based

moment invariants constitute one of the best choices to construct noise resistant features.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It has been very well documented that performance of

pattern recognition critically depends on whether the

employed features are invariant with respect to spatial

transformations. The simplest rotationally invariant feature

is the Fourier transform of the boundary curve which is

invariant with regard to translation and rotation if the

coordinate system is appropriately chosen.

A popular class of the invariant features is based on the

moment techniques which are believed to be reliable for

complex shapes because they involve not solely the contour

pixels but all the pixels constituting the object. The first

geometric moment invariants introduced by Hu [1–3] are

components of the projection of the image onto the

monomial functions. However, a dramatic increase in

complexity when increasing the order often makes Hu’s

moments impractical. Besides, the redundancy of the Hu
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moments noticed in [3] clearly indicates the need for further

research. Shortly after Hu’s paper, a variety of invariant

moments has been proposed and analyzed. The Fourier-

Mellin moments [3,7,8] extend classical geometric

moments by combining the circular Fourier transform

with the radial Mellin function. The complex moments

[3,9–11] have been introduced as another simple and

straightforward generalization of the geometric moments

to the complex plane. The orthogonal moments include the

Legendre moments [2–4], the Zernike moments [3–8,15] as

well as the less popular Tchebichef [12] and Krawtchouk

moments [13]. Orthogonality guarantees that the contri-

bution of each moment coefficient to the entire image is

unique and independent. The obvious motivation of the

orthogonal moments is the possibility to exactly recover the

object image given the infinite set of the moments. In other

words, the orthogonality guarantees consistency of the

moment based representation. Finally, Shen [14,15] intro-

duced spline wavelet moments representing the image by

multiresolution coefficients. It has been demonstrated that

such wavelet moment invariants may ensure a higher

classification rate.

Sensitivity of the moment invariants to the image noise

has been repeatedly mentioned in the literature (see, for
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instance [3]). As an interesting consequence, the moments

are rotationally invariant only when they are computed from

the ideal analog images. Even in the absence of noise

induced by physical devices there always exists a noise due

to a finite resolution of the image subjected to the spatial

transformations. Therefore, in practice the spatial trans-

formations themselves affect the invariance. Clearly, this

phenomenon might jeopardize the quality of pattern

recognition.

Therefore, this paper analyzes accuracy of the moment

invariants under the impact of important spatial transform-

ations, such as rotation and scaling. We show the impact on

the accuracy and the range of the errors. Furthermore, we

demonstrate that the wavelet moment invariants constitute

one of the best choices for high accuracy pattern

recognition.
2. Rotationally invariant moments

A general moment M of f(r,q) with respect to a moment

function F(r,q) in the polar coordinate system with the

origin at the centroid of the object is defined by

M Z

ð2p

0

ð1

0
f ðr; qÞFðr; qÞrdrdq:

In the context of image processing, f(r,q) is the image

function (the gray level). The continuous image function

can be obtained by the standard bilinear interpolation

applied to the discrete image. We assume that F(r,q)Z
b(r)u(q), where b(r) denotes a family of radial functions

and u(q) an angular function. Taking u(q)huq(q)Zeiqq

provides the rotational invariance. Note that if q is a

continuous variable, then the integral with regard to q is

nothing else than the circular Fourier transform. Usually
Fig. 1. Seventeen silhouettes of Aircraft (a) Alpha Jet, (b) MiG-17, (c) MiG-25, (d)

Brewer, (k) SF-260, (l) Mirage III, (m) Hunter, (n) F-5 Freedom, (o) F-15 Eagle,
(but not necessarily), in the theory of rotationally invariant

moments q is an integer [14] called the angular order. The

choice of b(r) defines the type of the invariant. Consider the

most popular choices. The Fourier-Mellin moment MF
p;q is

characterized by monomials b(r)Zrp. The complex moment

MC
p;q is a generalization of the geometric moments to the

complex plane. In the Cartesian coordinates the moment

function is defined by Fp;qðx; yÞZ ðxC iyÞpðxK iyÞq whereas

in the polar coordinates Fp;qðr; qÞZrpCqeiðpKqÞq. Therefore,

the radial and the angular functions in this case are given by

b(r)ZrpCq, u(q)Zei(pKq)q. In order to reduce redundancy

the complex moments are defined only for pRq.

The Zernike moment MZ
p;q is characterized by

bðrÞhZp;qðrÞZ
pC1

p

XðpKjqjÞ=2

sZ0

ðK1ÞsðpKsÞ!

s! pCjqj
2

Ks
� �

! pKjqj
2

Ks
� �

!
rp=2Ks;

where pRjqj and pKjqj is even.

Furthermore, we present the above integral by

M Z

ð1

0
bðrÞxðrÞrdr; where xðrÞ Z

ð2p

0
f ðr; qÞuðqÞdq:

From the viewpoint of functional analysis, each object is

represented by an infinite and unique set of moments if the

family of functions b(r) constitutes a basis in the appropriate

functional space. However, in practice, we always have a

finite set of moments affected by noise.

The wavelet bases have a number of advantages since

they could be adapted to the spectrum as well as to the

spatial properties of a particular set of objects.

In the case of a wavelet basis the set of the basis functions

is given by jm;nðrÞZ
1ffiffiffi
m

p j rKn
m

� �
; where j(r) is the mother

wavelet, m the dilation parameter (the scale index) and n
MiG-29, (e) An-12 Cub, (f) Jastreb, (g) Am-X, (h) Canberra, (i) Yak-36, (j)

(p) F-18Hornet, (q) Buccaneer.



Fig. 2. Impact of rotation.

Table 3

The standard deviation calculated for the normalized wavelet moment invariants,

images))

m The standard deviation of normalized jMw
m;n;1j, ðs1js2Þ

nZ0 nZ1 nZ2

Soft. Phys. Soft. Phys. Soft.

0 0.0253 0.0301 0.1019 0.1271 0.0668

1 0.0057 0.0096 0.0083 0.0173 0.0336

2 0.0194 0.0317 0.0111 0.0189 0.0251

3 0.0711 0.0783 0.0655 0.0701 0.0535

Fig. 3. Impact of scaling and rotation.

Table 2

The standard deviation calculated for the normalized Zernike moment invariants,

The standard deviation of normalized jMZ
p;1j

pZ1 pZ3 pZ5 pZ7 pZ9

0.0732 0.0245 0.0114 0.0512 0.0073

Table 1

The standard deviation calculated for the normalized Fourier-Mellin moment inv

The standard deviation of Normalized jMF
p;1j

pZ1 pZ2 pZ3 pZ4 pZ5

0.1967 0.1780 0.1444 0.0742 0.0566
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the shifting parameter. We denote the wavelet moments by

Mw
m;n;q.

Note that if ~M is a moment of the rotated image

f(r,qCf), where f is the angle of rotation, then ~MZeiqfM.

Therefore, j ~MjZ jMj. Thus, rotation of the object affects the

phase but not the magnitude. Furthermore,
Ð 1

0 jbðrÞjxðrÞjrdr

and
Ð 1

0 jbðrÞxðrÞrjdr are rotationally invariant as well.

The moment phase cancellation could be performed by

multiplying appropriate powers of moments rather than just

by taking the moments magnitudes (since the latter case

yields a redundant feature system). Flusser [9,10] has shown

that the rotation invariants can be constructed as productsQn
iZ1 M

ki
pi ;qi

from some minimal set defined by a supplemen-

tary integer equation with regard to pi, qi and ki (see [9] for

further details). Given the magnitudes, the Flusser’s

invariants can be evaluated by the identity

Qn
iZ1 M

ki
pi ;qi



ZQn
iZ1



Mpi ;qi



ki .
3. Experimental set up. Binary images

As mentioned in the introduction, the spatial transform-

ations induce a noise even when physical noise is negligible.

It should be noted that, the importance of the effects of the

transformational noise is problem-dependent. The decision

requires analysis of all the errors involved, such as blurring,

illumination, digitization errors, etc. However, there are

many cases when the features could be extremely sensitive
Alpha Jet (Rotation by using a software (72 images), Physical rotation (80

nZ3 nZ4

Phys. Soft. Phys. Soft. Phys.

0.0820 0.0346 0.0507 0.0282 0.0317

0.0581 0.0287 0.0481 0.0201 0.0417

0.0512 0.0314 0.0549 0.0373 0.0561

0.0692 0.0513 0.0571 0.1264 0.1430

Alpha Jet

pZ11 pZ13 pZ15 pZ17

0.1007 0.0116 0.1208 0.1332

ariants, Alpha Jet

pZ6 pZ7 pZ8 pZ9

0.0505 0.0490 0.0498 0.0518



Fig. 4. (a) b(r) versus jx1(r)j; r7, Z9,1, j1,0, respectively, (b) jb(r)jKjx1(r)jj

(normalized), (c) The relative error versus the angle.
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to the above mentioned transformational noise. For

instance, the error induced by the rotation noise for the

seventh order Hu’s moment applied to the images presented

in this chapter is as large as 100%. In this paper we analyze

the accuracy of the rotationally invariant moments as

applied to aircraft silhouettes in presence of the geometric

errors induced by the spatial transforms, namely, by rotation

and scaling. We consider silhouettes of seventeen aircraft

[17] rotated by 3608 with the increment 58 by means of a

standard graphics software and by means of physical

rotations (see Fig. 1). In order to eliminate accumulation
Fig. 5. Scattergram shows the discriminative capabilities of wavelet moment inv

separable sets, (b) the pair ðMw
1;4;1;M

w
2;2;1Þ has low accuracy and low discriminatio

Fig. 6. (a) Pair ðMF
1;1;M

F
2;1Þ has a low accuracy but a good discrimination rate, (b
of the error due to multiple re-sampling, each rotation has

been performed by rotating the original silhouette corre-

sponding to 08.

The accuracy is then evaluated by the standard deviation

denoted by s and the relative error denoted by E.
4. Preliminary examples

4.1. Example 1 accuracy of a Zernike moment under

the impact of the rotation and scaling

We evaluate the accuracy by measuring the relative error

and the standard deviation of the normalized features.

Consider the Zernike moments which are among the most

popular employed in pattern recognition. Consider MZ
7;1,

which has the best recognition rate among the Zernike

invariants of the first angular order applied to the aircraft set.

The quality of recognition was evaluated by using the

between-to within-class variance ratio [14]. Fig. 2(a) shows

a typical impact of the rotations. The error in jMZ
7;1j varies

from 0.0 to 11.91% with the maximum produced by the Yak

rotated by 3108. Clearly, rotations may have a significant

impact even on the best discriminative features.

Furthermore, scaling produces considerable errors as

well. In particular, when combined with rotations. We

evaluate the combined impact of scaling and rotation by

reducing the original image by 25% and rotating with the

increment 58. The impact on the accuracy is exemplified by
ariants, (a) the pair ðMw
1;0;1;M

w
1;1;1Þ has high accuracy and produces easily

n.

) pair ðMF
7;1;M

F
8;1Þ has good accuracy but low discrimination capabilities.



Table 4

The best moment invariants for the aircraft silhouettes

Aircrafts Moments Angular order q

qZ1 qZ2 qZ3 qZ4 qZ5 qZ6

Best s E Best s E Best s E Best s E Best s E Best s E

Alpha Jet Fourier (7,1) 0.0490 0.0380 (2,2) 0.0109 0.0091 (4,3) 0.0360 0.0306 (1,4) 0.0039 0.0035 (4,5) 0.0301 0.0264 (1,6) 0.0184 0.0138

Zernike (9,1) 0.0073 0.0055 (14,2) 0.0107 0.0087 (7,3) 0.0158 0.0135 (6,4) 0.0042 0.0036 (9,5) 0.0226 0.0170 (20,6) 0.0158 0.0119

wavelet (1,0,1) 0.0057 0.0045 (1,2,2) 0.0081 0.0061 (2,1,3) 0.0128 0.0114 (0,0,4) 0.0036 0.0031 (2,2,5) 0.0094 0.0090 (2,2,6) 0.0141 0.0114

MIG-17 Fourier (4,1) 0.0244 0.0346 (1,2) 0.0308 0.0282 (2,3) 0.0411 0.0387 (1,4) 0.0052 0.0079 (1,5) 0.0098 0.0080 (1,6) 0.0079 0.0090

Zernike (7,1) 0.0077 0.0062 (10,2) 0.0105 0.0086 (7,3) 0.0076 0.0092 (6,4) 0.0046 0.0066 (7,5) 0.0097 0.0078 (8,6) 0.0082 0.0093

Wavelet (1,2,1) 0.0074 0.0054 (1,0,2) 0.0061 0.0051 (1,2,3) 0.0104 0.0123 (0,0,4) 0.0039 0.0057 (1,2,5) 0.0068 0.0056 (1,2,6) 0.0075 0.0061

MiG-25 Fourier (4,1) 0.1472 0.0214 (1,2) 0.0127 0.0134 (1,3) 0.0086 0.0120 (1,4) 0.0076 0.0111 (2,5) 0.0206 0.0200 (6,6) 0.0310 0.0290

Zernike (3,1) 0.0099 0.0089 (14,2) 0.0086 0.0083 (5,3) 0.0067 0.0079 (6,4) 0.0074 0.0072 (11,5) 0.0180 0.0169 (14,6) 0.0077 0.0062

Wavelet (1,2,1) 0.0101 0.0098 (2,3,2) 0.0079 0.0071 (0,0,3) 0.0052 0.0070 (0,0,4) 0.0086 0.0112 (2,2,5) 0.0097 0.0084 (1,0,6) 0.0061 0.0053

MIG-29 Fourier (4,1) 0.0319 0.0411 (1,2) 0.0104 0.0122 (1,3) 0.0069 0.0095 (1,4) 0.0109 0.0098 (2,5) 0.0158 0.0246 (1,6) 0.0087 0.0074

Zernike (7,1) 0.0118 0.0087 (2,2) 0.0084 0.0075 (5,3) 0.0051 0.0043 (14,4) 0.0083 0.0066 (11,5,) 0.0128 0.0137 (8,6) 0.0097 0.0085

Wavelet (1,2,1) 0.0117 0.0096 (0,0,2) 0.0101 0.0098 (1,1,3) 0.0047 0.0037 (2,3,4) 0.0094 0.0079 (1,0,5) 0.0127 0.0130 (0,0,6) 0.0074 0.0072

An-12 Fourier (4,1) 0.0221 0.0215 (2,2) 0.0207 0.0240 (2,3) 0.0096 0.0080 (1,4) 0.0075 0.0080 (1,5) 0.0201 0.0163 (1,6) 0.0158 0.0131

Zernike (5,1) 0.0087 0.0079 (10,2) 0.0181 0.0163 (3,3) 0.0076 0.0068 (4,4) 0.0079 0.0084 (7,5) 0.0140 0.0151 (8,6) 0.0191 0.0144

Wavelet (0,1,1) 0.0085 0.0070 (1,0,2) 0.0125 0.0107 (0,0,3) 0.0087 0.0079 (0,0,4) 0.0059 0.0053 (0,0,5) 0.0110 0.0103 (0,0,6) 0.0147 0.0129

Jastreb Fourier (9,1) 0.0283 0.0655 (1,2) 0.0161 0.0142 (1,3) 0.0068 0.0065 (1,4) 0.0041 0.0021 (1,5) 0.0102 0.0084 (2,6) 0.0204 0.0151

Zernike (5,1) 0.0075 0.0061 (12,2) 0.0121 0.0115 (3,3) 0.0075 0.0065 (4,4) 0.0063 0.0043 (5,5) 0.0093 0.0075 (10,6) 0.0103 0.0095

Wavelet (1,3,1) 0.0074 0.0061 (1,3,2) 0.0122 0.0141 (0,0,3) 0.0061 0.0056 (0,0,4) 0.0042 0.0021 (0,0,5) 0.0081 0.0062 (1,2,6) 0.0111 0.0097

Am-X Fourier (5,1) 0.0327 0.0239 (1,2) 0.0138 0.0110 (2,3) 0.1714 0.0179 (1,4) 0.0040 0.0034 (3,5) 0.0192 0.0161 (2,6) 0.0245 0.0194

Zernike (9,1) 0.0082 0.0072 (6,2) 0.0096 0.0068 (7,3) 0.0139 0.0144 (6,4) 0.0034 0.0031 (9,5) 0.0120 0.0104 (12,6) 0.0242 0.0189

Wavelet (1,1,1) 0.0059 0.0055 (1,2,2) 0.0114 0.0102 (1,0,3) 0.0140 0.0153 (0,0,4) 0.0027 0.0020 (1,2,5) 0.0083 0.0102 (1,1,6) 0.0218 0.0177

Canberra Fourier (1,1) 0.0189 0.0163 (5,2) 0.0512 0.0577 (1,3) 0.0042 0.0033 (1,4) 0.0048 0.0060 (3,5) 0.0118 0.0076 (1,6) 0.0284 0.0354

Zernike (7,1) 0.0061 0.0048 (8,2) 0.0110 0.0126 (3,3) 0.0048 0.0039 (4,4) 0.0062 0.0073 (11,5) 0.0097 0.0073 (8,6) 0.0134 0.0105

Wavelet (1,1,1) 0.0050 0.0041 (1,1,2) 0.0068 0.0052 (0,0,3) 0.0033 0.0029 (1,2,4) 0.0043 0.0056 (1,1,5) 0.0082 0.0069 (0,0,6) 0.0080 0.0067

Yak-36 Fourier (6,1) 0.0510 0.0503 (1,2) 0.0079 0.0077 (1,3) 0.0353 0.0298 (1,4) 0.0059 0.0048 (4,5) 0.0385 0.0412 (1,6) 0.0078 0.0072

Zernike (9,1) 0.0227 0.0176 (2,2) 0.0070 0.0074 (11,3) 0.0172 0.0181 (6,4) 0.0043 0.0036 (9,5) 0.0126 0.0119 (8,6) 0.0075 0.0066

Wavelet (2,4,1) 0.0159 0.0151 (0,0,2) 0.0046 0.0036 (2,2,3) 0.0159 0.0141 (0,0,4) 0.0035 0.0029 (2,3,5) 0.0136 0.0127 (0,0,6) 0.0044 0.0040

Brewser Fourier (4,1) 0.0288 0.0246 (4,2) 0.0210 0.0158 (1,3) 0.0070 0.0056 (1,4) 0.0072 0.0064 (1,5) 0.0089 0.0073 (1,6) 0.0211 0.0168

Zernike (3,1) 0.0083 0.0091 (14,2) 0.0163 0.0156 (3,3) 0.0079 0.0063 (6,4) 0.0072 0.0063 (5,5) 0.0108 0.0091 (10,6) 0.0093 0.0072

Wavelet (1,2,1) 0.0081 0.0078 (2,4,2) 0.0137 0.0124 (0,0,3) 0.0063 0.0051 (0,0,4) 0.0057 0.0049 (0,0,5) 0.0068 0.0054 (1,1,6) 0.0079 0.0066

SF-260 Fourier (4,1) 0.0203 0.0219 (1,2) 0.0089 0.0081 (1,3) 0.0086 0.0079 (2,4) 0.0189 0.0150 (3,5) 0.0180 0.0176 (1,6) 0.0084 0.0065

Zernike (3,1) 0.0082 0.0068 (4,2) 0.0072 0.0078 (5,3) 0.0074 0.0068 (12,4) 0.0168 0.0146 (11,5) 0.0158 0.0141 (8,6) 0.0073 0.0060

Wavelet (1,2,1) 0.0095 0.0072 (0,0,2) 0.0068 0.0071 (0,0,3) 0.0073 0.0067 (1,2,4) 0.0147 0.0128 (1,1,5) 0.0146 0.0115 (0,0,6) 0.0058 0.0046

Mirage III Fourier (7,1) 0.0311 0.0292 (1,2) 0.0161 0.0130 (1,3) 0.0166 0.0134 (1,4) 0.0098 0.0088 (1,5) 0.0147 0.0157 (1,6) 0.0093 0.0084

Zernike (9,1) 0.0122 0.0100 (6,2) 0.0109 0.0093 (11,3) 0.0122 0.0098 (6,4) 0.0074 0.0078 (9,5) 0.0088 0.0073 (8,6) 0.0073 0.0078

Wavelet (1,0,1) 0.0078 0.0058 (1,0,2) 0.0104 0.0085 (1,2,3) 0.0110 0.0091 (0,0,4) 0.0071 0.0075 (0,1,5) 0.0080 0.0062 (0,0,6) 0.0064 0.0066

Hunter Fourier (4,1) 0.0215 0.0278 (4,2) 0.0184 0.0222 (1,3) 0.0147 0.0184 (1,4) 0.0061 0.0054 (3,5) 0.0184 0.0196 (1,6) 0.0148 0.0164

Zernike (11,1) 0.0079 0.0083 (10,2) 0.0175 0.0132 (7,3) 0.0104 0.0078 (6,4) 0.0065 0.0071 (9,5) 0.0133 0.0114 (12,6) 0.0142 0.0151

Wavelet (1,1,1) 0.0082 0.0084 (1,0,2) 0.0098 0.0074 (0,1,3) 0.0128 0.0133 (0,0,4) 0.0049 0.0051 (1,1,5) 0.0121 0.0109 (1,5,6) 0.0132 0.0110

F5-Free-

dom

Fourier (5,1) 0.0122 0.0214 (1,2) 0.0211 0.0193 (1,3) 0.0099 0.0084 (2,4) 0.0020 0.0129 (2,5) 0.0207 0.0252 (1,6) 0.0139 0.0131

Zernike (7,1) 0.0100 0.0172 (12,2) 0.0197 0.0171 (5,3) 0.0129 0.0119 (6,4) 0.0075 0.0073 (11,5) 0.0176 0.0155 (8,6) 0.0157 0.0142

Wavelet (0,1,1) 0.0095 0.0074 (1,1,2) 0.0146 0.0163 (0,0,3) 0.0097 0.0076 (0,1,4) 0.0068 0.0065 (1,2,5) 0.0137 0.0133 (0,0,6) 0.0131 0.0129

(continued on next page)
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jMZ
7;1j applied to represent six aircraft silhouettes (see

Fig. 3). The maximum relative error in jMZ
7;1j is as large as

34.91% for Yak rotated by 1758.

4.2. Example 2 why the wavelet moments perform better

This experiment shows the accuracy of multiresolution

moment invariants based on the B-spline wavelets [16]. In

this case the mother B-spline wavelet is given by

jðrÞZ
4akC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðkC1Þ
p sw cosð2pf0ð2rK1ÞÞexp K

ð2rK1Þ2

2s2
wðkC1Þ

� �
;

where kZ3, aZ0.7, f0Z0.41 and s2
wZ0:56. Consider a

silhouette of Alfa Jet. Tables 1–3 show the standard

deviation corresponding to MF, MZ and MW, respectively.

Plots of the most accurate moments of the first angular order

for each moment are shown in Fig. 4, namely, MF
7;1 (the

maximum error is 13.25%), MZ
9;1 (2.61%), Mw

1;0;1 (1.7%).

The plots illustrate why the wavelet basis performs better. It

is because of the adaptable shape of the wavelet that

the maximum of the wavelet basis function almost coincides

with maximum of jx(r)j. It is clear that if jx(r)j is large then

jb(r)j should be large and if jx(r)j is small, then jb(r)j should

be small. In other words, if the jb(r)j behaves similarly to

jx(r)j then it is good for representing x(r) in terms of the

integral MZ
Ð 1

0 bðrÞxðrÞrdr which is nothing else than a dot

product in a functional space. Let us evaluate this similarity

by calculating the difference D(r)hjb(r)jKjx(r)jj. The plots

of the normalized D(r) are shown in Fig. 4(b). The smallest

D(r) is achieved for Mw due to the good adaptation

properties of the wavelet. Clearly, the Zernike polynomials

cannot be adapted as close as the wavelets, moreover they

oscillate when the order increases. Finally, the Fourier-

Mellin moments represented by monomials are not

competitive at all. The high order monomials vanish when

r is close to 0. Consequently they simply ‘wash out’

information relevant to b(r).

Furthermore, Table 3 displays the comparison of

rotations performed physically and by the software. Clearly,

the errors are varying in the same magnitude. However,

physical rotations followed by capture produce larger errors

due to illumination, additional random noise, etc.

4.3. Example 3 accuracy and recognition rate

Consider a combination of the moment invariants

affected by rotations. The features shown in Figs. 5 and 6

are calculated for Alfa-Jet, Am-X and MiG-29. Fig. 5 shows

the relevance of the accuracy and discriminative capabilities

in the case of wavelets. The wavelet features shown in

Fig. 5(a) and (b) demonstrate that the high accuracy usually

leads to high recognition rate whereas low accuracy

moments create hardly separable features. However, it is

not always the case for other moments. Fig. 6(a) and (b)

show that although a pair of the Fourier-Mellin moments



Fig. 7. Grayscale images of Thai musical instruments (a) ‘SAW DUANG’ (Fiddle), (b) ‘SAW OU’ (Fiddle), (c) ‘SALOR’ (Lute), (d) ‘SAW SAM SAI’

(Fiddle), (e) ‘SUENG’ (Lute), (f) ‘JAKAE’ (Lute), (g) ‘PEE CHAWA’ (Pipe), (h) ‘PEE NOKE’ (Pipe).
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ðMF
7;1;M

F
8;1Þ displays relatively good accuracy sMiGZ

0.0827, sAlfaZ0.0988 discrimination will be better in case

of ðMF
1;1;M

F
2;1Þ characterized by sMiGZ0.2613, sAlfaZ

0.3747.
5. Comparison of the moment invariants

We present now a series of experiments performed on the

17 basic aircraft silhouettes. Since different angular orders

usually amplify different frequencies of the rotation noise, it

is not possible to always find one small set of basis wavelets

suitable to represent all the angular orders. Besides the most

accurate moment invariants are different for different

aircraft types. The accuracy of the wavelet moment

invariants has been compared with the Zernike and the

Fourier-Mellin moment invariants. Since the performance

of the complex moments is very close to that of the Fourier-

Mellin moments the complex moments are omitted. Table 4

shows the relative error along with the standard deviation

for the best moment for each angular order and for each

type. Surprisingly, the wavelet basis is almost uniformly

better then the Zernike and the Fourier-Mellin basis. As a

matter of fact, Mw overperforms MZ and MF in 83% from the

102 experiments. However, certain Zernike functions may

be better suited for a particular silhouette such as MZ
2;2 for

MIG-29, MZ
7;3 for MIG-17, MZ

3;3 for An-12, etc.
Fig. 8. The Zernike b
6. Accuracy of the moment invariants applied to

grayscale images and remarks on the spectral properties

This chapter introduces an experimental set consisting of

eight grayscale images [18] shown in Fig. 7. Since the

moment invariants depend now on the overall intensities of

the image the transformational noise displays much more

profound impact. The objects were selected due to their

elongated shape. In this case the effects of rotation are more

pronounced. The increase in sensitivity to the noise can also

be explained by complicated contours such that the centroid

often lies outside the image body. Table 5 shows that for the

grayscale images the wavelet based moments are more

accurate then the conventional moments.

The moments considered in the frequency domain when

the object is subjected to the ‘conventional’ high frequency

noise as well as to the transformational noise exhibit similar

behavior. The accuracy of the Fourier transform of b(r)x(r)r

for different b(r) shows that in the frequency domain the

most accurate wavelet is usually the best as compared to

other moments. It exhibits a better recognition rate as well.

Moreover, the high accuracy in the time domain usually

leads to the high accuracy in the frequency domain and vise

versa.

Finally, note that the monomials rp, rpCq corresponding

to the Fourier-Mellin and the complex moment are typical

low-pass filters evolving into the band-stop filter as the order
asis functions.



Table 5

The best moment invariants for the grayscale images

Aircrafts Moments Angular order q

qZ1 qZ2 qZ3 qZ4 qZ5 qZ6

Best s E Best s E Best s E Best s E Best s E Best s E

Saw

Duang

Fourier (2,1) 0.0283 0.0227 (1,2) 0.0089 0.0091 (3,3) 0.0267 0.0215 (1,4) 0.0126 0.0095 (3,5) 0.0318 0.0255 (1,6) 0.0186 0.0120

Zernike (5,1) 0.0121 0.0097 (4,2) 0.0071 0.0068 (7,3) 0.0171 0.0147 (6,4) 0.0138 0.0099 (9,5) 0.0256 0.0214 (6,6) 0.0217 0.0153

wavelet (1,2,1) 0.0086 0.0070 (0,1,2) 0.0070 0.0067 (1,2,3) 0.0106 0.0120 (0,0,4) 0.0108 0.0077 (1,2,5) 0.0169 0.0133 (0,0,6) 0.0149 0.0118

SAW OU Fourier (7,1) 0.0289 0.0313 (1,2) 0.0091 0.0103 (2,3) 0.0284 0.0261 (1,4) 0.0083 0.0091 (6,5) 0.0273 0.0310 (1,6) 0.0092 0.0075

Zernike (11,1) 0.0206 0.0210 (2,2) 0.0316 0.0178 (11,3) 0.0208 0.0179 (4,4) 0.0089 0.0115 (11,5) 0.0131 0.0145 (6,6) 0.0101 0.0090

Wavelet (2,4,1) 0.0124 0.0153 (0,0,2) 0.0086 0.0067 (2,3,3) 0.0152 0.0175 (0,0,4) 0.0077 0.0065 (2,4,5) 0.0126 0.0108 (0,0,6) 0.0088 0.0067

SALOR Fourier (4,1) 0.0179 0.0167 (1,2) 0.0098 0.0107 (5,3) 0.0168 0.0141 (6,4) 0.0382 0.0211 (7,5) 0.0167 0.0195 (1,6) 0.0108 0.0159

Zernike (3,1) 0.0084 0.0078 (4,2) 0.0076 0.0069 (7,3) 0.0128 0.0095 (14,4) 0.0277 0.0181 (13,5) 0.0164 0.0194 (6,6) 0.0157 0.0188

Wavelet (1,2,1) 0.0077 0.0071 (0,1,2) 0.0086 0.0081 (1,1,3) 0.0097 0.0091 (1,1,4) 0.0141 0.0115 (1,0,5) 0.0132 0.0150 (0,1,6) 0.0122 0.0182

SAW

SAM SAI

Fourier (4,1) 0.0391 0.0296 (1,2) 0.0144 0.0204 (4,3) 0.0400 0.0317 (1,4) 0.0157 0.0154 (3,5) 0.0426 0.0366 (1,6) 0.0166 0.0203

Zernike (5,1) 0.0095 0.0082 (2,2) 0.0128 0.0116 (7,3) 0.0275 0.0241 (4,4) 0.0176 0.0212 (13,5) 0.0410 0.0326 (6,6) 0.0232 0.0249

Wavelet (1,0,1) 0.0127 0.0118 (1,0,2) 0.0111 0.0108 (0,1,3) 0.0195 0.0163 (0,0,4) 0.0157 0.0151 (2,2,5) 0.0214 0.0253 (0,0,6) 0.0159 0.0184

SUENG Fourier (3,1) 0.0212 0.0160 (1,2) 0.0132 0.0079 (2,3) 0.0180 0.0129 (1,4) 0.0145 0.0091 (2,5) 0.0204 0.0166 (1,6) 0.0151 0.0097

Zernike (7,1) 0.0098 0.0073 (4,2) 0.0101 0.0067 (11,3) 0.0169 0.0098 (4,4) 0.0149 0.0117 (13,5) 0.0166 0.0113 (6,6) 0.0176 0.0112

Wavelet (1,0,1) 0.0082 0.0059 (0,0,2) 0.0085 0.0059 (1,2,3) 0.0094 0.0084 (2,0,4) 0.0108 0.0081 (1,1,5) 0.0120 0.0112 (0,0,6) 0.0148 0.0095

JAKAE Fourier (3,1) 0.0221 0.0146 (1,2) 0.0132 0.0085 (1,3) 0.0180 0.0168 (1,4) 0.0150 0.0084 (4,5) 0.0261 0.0242 (2,6) 0.0271 0.0228

Zernike (3,1) 0.0116 0.0109 (4,2) 0.0091 0.0075 (9,3) 0.0169 0.0127 (6,4) 0.0147 0.0077 (15,5) 0.0192 0.0180 (16,6) 0.0164 0.0138

Wavelet (1,0,1) 0.0082 0.0073 (0,0,2) 0.0088 0.0068 (1,1,3) 0.0098 0.0079 (0,0,4) 0.0139 0.0071 (2,1,5) 0.0140 0.0112 (2,1,6) 0.0161 0.0120

PEE

CHAWA

Fourier (5,1) 0.0401 .0322 (3,2) 0.0139 0.0177 (5,3) 0.0398 0.0319 (1,4) 0.0159 0.0144 (5,5) 0.0387 0.0316 (1,6) 0.0153 0.0181

Zernike (3,1) 0.0161 0.0139 (6,2) 0.0116 0.0127 (5,3) 0.0211 0.0177 (6,4) 0.0140 0.0129 (7,5) 0.0257 0.0241 (8,6) 0.0185 0.0238

Wavelet (1,1,1) 0.0160 0.0135 (1,1,2) 0.0101 0.0121 (1,1,3) 0.0165 0.0132 (0,0,4) 0.0119 0.0099 (1,1,5) 0.0173 0.0134 (0,0,6) 0.0126 0.0113

PEE

NOK

Fourier (7,1) 0.0667 0.0612 (4,2) 0.0109 0.0133 (4,3) 0.0660 0.0609 (1,4) 0.0132 0.0095 (7,5) 0.0821 0.0603 (1,6) 0.0154 0.0143

Zernike (5,1) 0.0553 0.0503 (10,2) 0.0079 0.0087 (11,3) 0.0380 0.0498 (6,4) 0.0092 0.0083 (7,5) 0.0656 0.0535 (8,6) 0.0113 0.0092

Wavelet (1,3,1) 0.0386 0.0443 (1,3,2) 0.0072 0.0063 (1,3,3) 0.0357 0.0425 (0,0,4) 0.0084 0.0078 (1,3,5) 0.0383 0.0489 (0,0,6) 0.0085 0.0068
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Fig. 9. (a)–(d) Spectrum of the moment radial functions, (a) the Fourier-Mellin basis, (b) the complex basis, (c) the Zernike basis, (d) the B-spline wavelet basis.
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increases (Fig. 9(a) and (b)). The Zernike basis functions in

the spatial domain (see Fig. 8) are characterized by

increasing oscillations. Consequently, in the frequency

domain, the Zernike function becomes more and more

similar to a band-pass filter (Fig. 9(c)). The higher is

the order the more to the right the pass-band moves.

However, the resulting filter is not smooth and the pass band

is difficult to control. As opposed to the basis functions

above, the wavelets make it possible to better control the

spectral characteristics. Besides, the wavelet basis function

(see Fig. 9(d)) exhibits smooth band-pass characteristics.

Fig. 10 shows x(r) the frequency domain. Again the wavelet

adapts better to the peak at the low frequency and therefore

provides better accuracy then the Zernike polynomial. Z5,1,

j1,2 correspond to the best Zernike and wavelet, respect-

ively. The error in the low frequency area is 0.942 and

0.802, respectively which exemplifies the advantages of

wavelets in the frequency domain as well.
Fig. 10. (a) SAW DUANG and the best Zernike polynomial in the

frequency domain, (b) SAW DUANG and the best wavelet in the frequency

domain.
7. Conclusion

We analyze the behavior the Zernike, Fourier-Mellin,

complex and wavelet moment invariants under the impact of

rotation and scaling. Although the moments are invariant with

regard to the spatial transformations, in practice the

transformation themselves affect the invariance. Noise

sensitive invariants such as Hu’s moment could be dramati-

cally affected by the noise. Moreover, less sensitive moments

such as the Fourier-Mellin and the complex moment and even

the Zernike and the wavelet moment could substantially

deviate from the actual value under the impact of the

transformational noise. Therefore, the quality of features

should not only be evaluated by sensitivity to high frequency

noise but also to rotations and scaling. Our experiments show

that invariant moments based on the appropriately chosen

family of the wavelet radial functions are seemingly less

affected by the transformational noise. Therefore, a system

based on the rotation invariants should be subjected to a series

of tests involving rotated and scaled images. The discrimi-

native features should be selected from the less noise

sensitive radial functions. Appropriately selected wavelets

constitute the best choice for such a series of tests.
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