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Abstract

We propose multiresolution filter bank techniques to construct rotationally invariant moments. The multiresolution pyramid moti-
vates a simple but efficient feature selection procedure based on a combination of a pruning algorithm, a new version of the Apriori
mining techniques and the partially supervised fuzzy C-mean clustering. The recognition accuracy of the proposed techniques has been
tested with the reference to conventional methods. The numerical experiments, with more than 50,000 images taken from standard image
datasets, demonstrate an accuracy increase ranging from 5% to 27% depending on the noise level.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The rotationally invariant moments are based on a spa-
tial-frequency domain representation. A circular Fourier
transform (the Fourier transform with regard to the angular
coordinate) is applied inside a circle occluding the object.
The result is a complex function the frequency and the
radial variable. Next, the function is sampled with regard
to the frequency variable at integer frequencies. The magni-
tude of every sample is rotationally invariant. Next, the
samples, which are functions of the radial variable, are rep-
resented in terms of an appropriate basis. The coefficients of
the Fourier series in this basis constitute the required
moments. In this paper we will call these moments ‘‘coeffi-
cients’’ (‘‘details’’ and ‘‘approximations’’) and ‘‘features’’
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depending on the context. The choice of the basis is critical
for pattern recognition. The most popular options are the
Legendre polynomials, the Zernike polynomials, Mellin
monomials (Teh and Chin, 1988; Mukundan and Rama-
krishnan, 1995; Kan and Srinath, 2002) complex monomi-
als (Flusser, 2002), the Tchebichef (Mukundan et al.,
2001) and the Krawtchouk polynomials (Yap et al., 2003)
(the Legendre, Tchebichef and Krawtchouk polynomials
have been applied only in the Cartesian domain). Shen
and Ip (1999) introduced rotationally invariant moments
representing the image by projections onto certain wavelet
spaces. It has been demonstrated that the wavelet moments
may ensure a higher classification rate with the reference to
conventional moments applied to discriminate similar
objects such as digit 1 and letter ‘‘l’’, etc. It was confirmed
by experiments with the accuracy of the wavelet rotation
invariants published in (Rodtook and Makhanov, 2005).
However, Shen and Ip do not fully exploit the concept of
multiresolution. The wavelet moments are obtained by
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integrating the circular Fourier transform of the object
image with the projections onto the so-called Gaussian
approximation of a B-spline the mother wavelet at different
resolution levels. In the framework of the multiresolution
analysis these integrals constitute the ‘‘details’’ coefficients
suitable for recognition of similar objects yet belonging to
different classes such as digit 1 and letter ‘‘l’’, etc. However,
such recognition may fail when objects from the same class
are subjected to random noise. It may also fail when the
object is obtained from the original object by adding a sin-
gle or several parts or making holes As opposed to that, our
technique uses both the approximation and the detail coef-
ficients of the multiresolution pyramid (filter bank). The
multiresolution analysis treats the above cases efficiently
and has a better recognition rate as compared with the pre-
ceding methods. Next, we propose a feature selection algo-
rithm designed specifically for the multiresolution pyramid.
First, it processes specific wavelet bands, then the wavelet
coefficients individually, and, finally, combinations of the
coefficients.

First, the circular Fourier transform of the object is
sampled at integer frequencies called the angular orders.
Next, each sample is subjected to a fast quadrature mirror
filter (QMF) to generate a filter bank. The filter bank is
characterized by a large number of coefficients and is
always overcomplete. Many coefficients do not contribute
and even degrade the performance of the classifier. Our
new multi stage feature selection algorithm eliminates noise
sensitive, redundant and non-important features. As
opposed to Shen and Ip, the algorithm takes a full advan-
tage of the multiresolution analysis. First of all, we exclude
noise-sensitive frequencies. Next, we obtain a tree struc-
tured filter bank and prune it using the Kullback–Leibler
distance which measures the relative entropy of the decom-
positions (Coifman and Wickerhauser, 1992). Next, we
analyze the features individually by the standard ANOVA
and feed the result to a selection procedure based on the
Apriori Algorithm (AA) (Han and Kamber, 2001) initially
developed for data mining in large databases. We propose
a modified version of the AA (MAA) combined with a par-
tially supervised fuzzy C-mean clustering technique (FCM)
(Pedrycz and Waletzky, 1997). The FCM cost function is
used in the MAA instead of a probabilistic measure
employed by the standard AA to evaluate the confidence
in combinations of the features. Furthermore, the conven-
tional AA requires that combinations of features obey the
so-called anti-monotonic property, that is, if a set cannot
pass a test then all of its supersets fail the test as well.
We propose a D anti-monotonic property which states that
the combination can fail the test within a certain interval
but still be considered at the next stage. Relaxing the con-
ditions of the conventional AA allows to pass a local min-
imum and to find a better combination of the features. We
show that the MAA combined with the partially supervised
FCM performs extremely well on the multiresolution coef-
ficients and creates features leading to high recognition
rates. The recognition rate of the new algorithm has been
tested by 50,000 different images and compared with the
Zernike moments, the Fourier–Mellin moments as well as
with wavelet based moments employing only details pro-
posed by Shen and Ip. The algorithm has been also com-
pared with a variety of previously reported feature
selection techniques such as the individual selection, the
selection which employs all combinations of the features
and a concatenation of the MAA and the unsupervised
FCM. We also analyze the use of the Euclidian and the
Mahalonobis distance in the multiresolution framework.

2. Rotationally invariant moments

A general moment of an image f(r,h) with respect to a
moment function F(r,h) in the polar coordinate system
with the origin at the centroid of the object is defined by

M ¼
Z 2p

0

Z 1

0

f ðr; hÞF ðr; hÞr dr dh: ð1Þ

Let F(r,h) = b(r)x(h), where b(r) denotes a family of radial
functions such as the Zernike polynomial, Mellin polyno-
mial, etc. The choice of b(r) defines the type of the moment.
x(h) denotes an angular function. Taking x(h) � xq(h) =
eiqh provides the rotational invariance. Note, that if q is a
continuous variable, then the integral with regard to h is
nothing but the circular Fourier transform. In the theory
of rotationally invariant moments q is an integer called
the angular order (Shen and Ip, 1999).We present the
above 2-D integral by

Mq ¼
Z 1

0

bðrÞnqðrÞr dr; ð2Þ

where

nqðrÞ ¼
Z 2p

0

f ðr; hÞeiqh dh ð3Þ

is a complex function of the spatial variable r.
If eM q is a moment of a rotated image f(r,h + / ), where

/ is the angle of rotation, then eM q ¼ eiq/Mq. Therefore,
j eM qj ¼ jMqj. In other words, rotations of the object affect
the phase but not the magnitude.

3. Rotationally invariant filter bank

From the viewpoint of functional analysis, each object is
represented by an infinite and unique set of moments if the
family of functions b(r) constitutes a basis in an appropri-
ate functional space. In the case of wavelets, the wavelet
basis function is given by wm,n(r) = 2m/2w(2mr � 0.5n)
(Daubechies, 1992), where m the dilation parameter (the
scale index) and n the shifting parameter. The wavelet bases
have a number of advantages since they could be adapted
to the spectrum as well as to the spatial properties of a par-
ticular set of objects. A multiresolution version of the pro-
posed wavelet moments will be introduced next.

In terms of the multiresolution analysis the sequence of
approximating spaces is generated by the so-called scaling



Fig. 1. A two-band filter bank tree. Variables q and n have been omitted.
Only 2 steps are shown.
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functions u (Daubechies, 1992; Strang, 1989; He, 2004),
whereas the wavelet functions are employed to represent
the orthogonal complements to the approximating spaces
called the detail spaces. We define the approximation and
the detail moments respectively as follows:

Am;n;q ¼
Z 1

0

um;nðrÞnqðrÞr dr; Dm;n;q ¼
Z 1

0

wm;nðrÞnqðrÞr dr;

ð4Þ
where um,n(r) are the so-called scaling functions.

Note that
P

nAmþ1;n;qumþ1;nðrÞ ¼
P

nDm;n;qwm;nðrÞþP
nAm;n;qum;nðrÞ which tells us that nq in a fine space

m + 1 is the sum of its representation in the coarse space
m and its orthogonal complement. There exists a variety
of the wavelet bases. A classic example is the Haar basis.
The Haar wavelet and scaling function are given respec-
tively by

wðrÞ ¼
1; t 2 ½0; 0:5Þ
�1; t 2 ½0:5; 1Þ
0; otherwise

8><
>: and uðrÞ ¼

1; r 2 ½0; 1Þ
0; otherwise

:

�

However, in the general case a closed form for u(r) may
not exist. In this case the scaling functions are to be found
from the so-called dilation equation given by umþ1ðrÞ ¼PMC

k¼0ckumð2r � kÞ, where u0(r) = u(r) and c0; c1; . . . ; cMC

are the coefficients satisfying certain conditions (He,
2004). There are several ways to construct the scaling func-
tions (Strang, 1989; Meyer, 1992). The Daubechies method
(Daubechies, 1992) constructs the scaling functions by
iterating the dilation equation above. Once the scaling
functions are found, the wavelet function is represented
by wmþ1ðrÞ ¼

PMC
k¼0ð�1Þkckumð2r � kÞ. For instance for

MC = 1 and MC = 3 the corresponding functions are,
respectively, the Haar wavelet and the Daubechies D4

wavelet. The discrete version of the above decomposition
called the discrete wavelet multiresolution pyramid or the
filter bank was proposed by Mallat (1989), Unser and
Aldroubi (1992). It was shown that the discrete wavelet
transform can be performed by using the so-called finite
impulse response filters (FIRF) which produce a tree struc-
tured filter bank. This approach can be derived with or
without a reference to the continuous version of the wave-
lets. In the framework of the QMF, the approximation and
the detail filter bank moments are constructed using convo-
lution type formulas as follows:

am;n;q ¼
XNmþ1�1

k¼0
k�2nP0

hk�2namþ1;k;q; dm;n;q ¼
XNmþ1�1

k¼0
k�2nP0

gk�2namþ1;k;q:

ð5Þ

m = m0,m0�1, . . . , 0 is the scale (resolution) index,
n = 0,1, . . . , (Nm+1/2) � 1 is the position index. Each step
reduces the number of available coefficients Nm+1 by factor
2. m0 + 1 is the highest resolution level. The input am0þ1;n;q

is obtained by sampling (3) at rn = n/(N � 1), n = 0, . . . ,
N � 1, where N ¼ N m0þ1 is the size of the input data.
Finally, h and g are the low-pass and the high pass FIRFs
associated with a corresponding wavelet. The popular
Daubechies and B-spline based FIRFs of an arbitrary
order can be obtained from Matlab 7 or from the Wavelet
Explorer of Mathematica. Note that in (5) the data is
extended periodically at the end points using a procedure
similar to the circular convolution. Then the output is
downsampled and a low-frequency output (approximation)
is fed to the identical filters as shown in Fig. 1.

The number of coefficients out of this system is the same
as the number in. The number is doubled by having two fil-
ters; then it is halved by the decimation back to the original
number. Actually, no information is lost in this scheme and
it is possible to completely recover the original coefficients.
Furthermore, let ~f be a rotated image, where / is the angle
of rotation, then

~am;n;q ¼
X

k

hk�2n~amþ1;k;q ¼ eiq/
X

k

hk�2namþ1;k;q;

~dm;n;q ¼
X

k

gk�2n~amþ1;k;q ¼ eiq/
X

k

gk�2namþ1;k;q:

Therefore, jam,n,qj and jdm,n,qj are rotation invariants for
any q.
4. Feature selection algorithm

We present an algorithm based on examining the bands
and the features individually and in combinations. As
opposed to (Shen and Ip, 1999) our algorithm takes full
advantage of the multiresolution analysis. First, we prune
the filter bank using the relative entropy of the decomposi-
tions. Next, we analyze the bands and contributions of
each individual wavelet as well. We test the features indi-
vidually by the standard ANOVA and feed the result to
a selection procedure based on a new modification of the
Apriori technique (MAA) to analyze combinations of the
coefficients. The algorithm is given below:

1. Calculate nq(r) for a prescribed set of the angular orders q

by sampling the circular Fourier transform (3).
2. Discard noise-sensitive angular orders by evaluating the

least square error type given by

EðqÞ¼
PI

i¼1

PJ
j¼1

PN�1
n¼0 nqðrnÞi;Template

��� ���� nqðrnÞi;j
�� ��� �2

IJN
; ð6Þ
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where I is the number of the classes, J the number of ob-
jects in each class and nq(rn)i,Template the circular Fourier
transform of the template associated with class i. Note
that the procedure is just a preliminary filtering which
allows to discard easily recognizable bad choices. The
resulting set is fed to the next step of the procedure.

3. Apply the QMF to the output of step 2 to obtain a tree
structured filter bank of coefficients (approximation
and detail moments).

4. Prune the resulting filter bank to find the best discrimi-
nating subbands which produce well-separated classes
(Coifman and Wickerhauser, 1992; Saito and Coifman,
1994). A symmetric version of the Kullback–Leibler dis-
tance based on the relative entropy is used to measure
the discrimination power of the subband. A good sub-
band is the one that reduces the relative entropy, which
for the case of two classes C1 and C2 is given by

dC1C2
ðm; q; kÞ ¼ 1

2

XNm�1

n¼0

cC1
ðm; q; n; kÞ log

cC1
ðm; q; n; kÞ

cC2
ðm; q; n; kÞ

�

þ cC2
ðm; q; n; kÞ log

cC2
ðm; q; n; kÞ

cC1
ðm; q; n; kÞ

�
; ð7Þ

where

cCi
ðm; q; n; kÞ ¼

P
wm;n;q2Ci

wm;n;qw�m;n;qP
amþ1;n;q2Ci

amþ1;n;qa�mþ1;n;q

:

* denotes complex conjugate and k = 0, 1 denotes the
approximation and the detail branch of the tree respec-
tively, and the summation is over all objects from class
Ci

wm;n;q ¼
am;n;q; if k ¼ 0 ðapproximationsÞ
dm;n;q; if k ¼ 1 ðdetailsÞ:

�
ð8Þ

In the case of I classes

dðm; q; kÞ ¼
XI�1

i¼1

XI

j¼iþ1

dCiCjðm; q; kÞ: ð9Þ

Using (7)–(9), the algorithm evaluates the discrimi-
nation power of the subbands by comparing the
Kullback–Leibler distance before and after the split as
shown in Fig. 2.
Fig. 2. An example of pruning by the Kullback–Leibler relative entropy. Band
5. Reduce the dimension of the feature space by analyzing
the features individually using a statistical testing (John-
son, 2000). We use a one-way ANOVA applied to the
magnitudes of the moments with a randomized complete
block design to verify the assumption l1 5 l2 5 � � �5
li � � �5 lI, where li is the mean-feature of the class i.

6. Analyze combinations of the features. At this stage the
result of the multiresolution analysis is fed to the Mod-
ified Apriori Algorithm (MAA). The Apriori selection
initially developed for data mining applications reduces
the number of combinations appearing when mining for
frequent itemsets in large databases. Since the filter bank
produces a large number of features, the AA is beneficial
in this case as well. An initial set of the ‘‘frequent’’ fea-
tures L1 is found by ANOVA at step 5. It is then used to
find L2 which consists of the best pairs of features taken
from L1. The set of the best discriminating 2-itemsets is
then used to find L3, and so on. A set of the candidate k-
itemsets is generated by joining Lk�1 with itself
Ck = Lk�1 · Lk�1. The choice of a good combination
of the features is based on evaluating a partially super-
vised FCM-type cost function (Pedrycz and Waletzky,
1997) used by analogy with the measure of confidence
in the conventional Apriori algorithm (Han and
Kamber, 2001). The cost function is given by

fCðX Þ ¼ JðX Þ logðNmiss þ #Þ; ð10Þ
where X is a combination of features, J is the fuzzy C-
mean cost function, Nmiss is the number of training
patterns that have been incorrectly clustered, # > 1 a
prescribed constant to eliminate the singularity log (0).
Besides the features should be normalized or standard-
ized prior to calculating fC. Furthermore, the conven-
tional AA requires that combinations of features obey
the so-called anti-monotonic property, that is, if a set
cannot pass a test then all of its supersets fail the test
as well. For example, in the case of two features A

and B the anti-monotonic property requires that

fCðA [ BÞ 6 fCðAÞ and f CðA [ BÞ 6 fCðBÞ: ð11Þ
As opposed to that, the MAA employs a D-anti-mono-
tonic property which makes it possible to pass a local
minimum and find a better combination of the features.
The confidence in a combination of two features A and
m 0 � 1 has been removed since d (m 0,q, 0) < d(m 0 � 1,q, 0) + d(m 0 � 1,q,1).
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B with regard to a cost function fC (fC P 0) is evaluated
as follows:

fCðA [ BÞ 6 fCðAÞ þ D and f CðA [ BÞ 6 fCðBÞ þ D;

ð12Þ
where D defines the allowable interval of confidence.
The confidence in a combination of n features is evalu-
ated using the same principle. The best combination is
the k-itemset which minimizes the cost function above.

Finally, the MAA applies as follows: (1) find the best
feature set from each particular resolution, (2) find the best
feature set from the entire multiresolution analysis, (3) find
the best feature set from the entire set of the angular
orders.

Finally, once an appropriate feature set has been
selected, the classification templates are automatically
found as the centroids of the FCM clusters.

5. Why does the feature selection perform better? Illustrative
examples

This section exemplifies some steps of the algorithm
described above applied to differentiate between digit 1
and letter ‘‘1’’.

Example 1 (Pruning the Filter Bank Tree). Fig. 3 illustrates
the pruning step for the filter bank tree created for the
angular order at q = 1 for recognition between digit 1 and
letter ‘‘1’’. The coarsest level m = 0 as well as level m = 2
have been eliminated since d(1,0,1) = 0.082 < d(0, 0,1) +
d(0,1,1) = 0.098 and d(3,0,1) = 0.394 < d(2,0,1) + d (2,1,1) =
0.423. Note, that although level m = 2 has been excluded, it
does not mean that all the subsequent levels are not
appropriate. For example, level m = 1 has also been
selected.

Finally, the pruning algorithm combined with the indi-
vidual statistical selection by ANOVA has eliminated
47.4% of the features (74 from 156 available coefficients),
thus, substantially reducing the number of combination
to be tested at step 5.

Example 2 (Modified Apriori Algorithm). The MAA
applied to feature selection for differentiation between 1
and ‘‘1’’ is illustrated here. We check all combinations
Fig. 3. Pruning subbands at resolution level m = 0 an
taken from the original set at the resolution level m = 3
consisting of 40 coefficients (20 details and 20 approxima-
tions). Consider how the MAA applies to this case. The
first itemset L1 is an output of ANOVA. It consists of 12
approximation and 13 detail coefficients. The set is given
by

fa2g; fa3g; fa4g; fa5g; fa6g; fa10g; fa12g; fa15g; fa16g; fa17g;
fa18g; fa19g; fd1g; fd3g; fd6g; fd8g; fd9g; fd10g; fd12g; fd13g;
fd14g; fd15g; fd16g; fd17g; fd18g:

The next level L2 contains only 16 items:

fa3; a5g; fa3; a6g; fa3; d9g; fa5; a6g; fa5; d9g; fa6; d9g;
fa15; a16g; fa15; d8g; fa15; d14g; fa15; d17g; fa16; d8g; fa16; d14g;
fa16; d17g; fd8; d14g; fd8; d17g; fd14; d17g:

L3 has 11 items:

{a3,a5,d9}, {a15,a16,d8}, {a15,a16,d14}, {a15,d16,d17},
{a15,d8,d14}, {a15,d8,d17}, {a15,d14,d17}, {a16,d8,d14},
{a16,d8,d17}, {a16,d14,d17}, {d8,d14,d17}.

Finally L4 includes only 1 item: {a15,a16,d14,d17}.

Note that although ak, dk complex numbers, evaluation
of the cost function fC requires only their (rotationally
invariant) magnitudes.

Suppose that the set of the best combinations of features
is selected using the condition fC 6 17. In this case our data
mining algorithm outputs: {a15,d14}, {a15,d17}, {d14,d17},
{a15,d14,d17} and {a15,a16,d14,d17}. The best combination
is {a15,d14,d17}, fC({a15,d14,d17}) = 15.9086. However, the
conventional AA would discard {a15,a16,d14} since
fC({a15,a16,d14}) > fC({a15,d14}). Consequently a good
combination {a15,a16,d14,d17} which satisfies fC ({a15,
a16,d14,d17}) = 16.8072 6 17 is not selected. However, the
MAA characterized by D = 2 will select {a15, a16,d14,d17}.
Note, that the case of 20 + 20 coefficients above was con-
sidered for simplicity. Taking, for example, 32 + 32 coeffi-
cients leads to astronomical 2 · 1010 Gflops which for a
desktop computer with a Pentium 4 means approximately
300 years of calculations. However, the proposed method
requires only a few hours. The choice of D depends on
the number of combinations this choice generates. Of
course, ideally, we would like to check all possible combi-
nations. However, more often than not this leads to an
d m = 2 by using the Kullback–Leibler distance.
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astronomical time of computation. Therefore, D should be
set in such a way that the computing time is reasonable.
For example, one can consider 10–15% of the minimum
of cost function at each step. Actually, it is also possible
to threshold the maximum allowed number of combina-
tions. However, in this case combinations with a poor dis-
crimination power could be selected. Finally, since the
number of coefficients is decreasing at each step, it is also
possible to vary D depending on the step.
Fig. 5. The modified UMD logos.
6. Experimental results

We evaluate the performance of the proposed algorithm
by three datasets. The first dataset consists of 48,400 noisy
images based on twenty basic aircraft silhouettes (Wick-
ham, 1986): Alpha Jet, Am-X, Mirage F1, F-4 Phantom,
F-15 Eagle, MiG-17, A-6 Intruder, Aviocar C-212, An-32
Cline, F-5 Freedom, An-12 Cub, Hunter, Brewer, Jastreb,
MiG-29, Buccaneer, MiG-25, Mirage III, F-18 Hornet,
Yak-36 (see Fig. 4). Each silhouette produces 1600 training
images and 820 testing images. The second dataset based
on an online database (NIST database), consists of
machine-printed characters, namely, 11000 upper case
English letters (Bold, Courier). We use 7000 letters for
training and 4000 for testing. The third dataset consists
of 8640 images based on sixteen corporate 8-bit logo
images (UMD Database) taken from a research database
of University of Maryland (UMD), see Fig. 5. Each logo
produces 351 training images and 189 testing images. Since
the UMD logos are very different, the images were modi-
fied in order to create a more difficult pattern recognition
task. For each image we created a ‘‘similar’’ image by flip-
ping a part of the picture as shown in Fig. 5. For example,
‘‘Kodak’’ in image (c) was replaced by ‘‘kadoK’’ in (d), 66
in image (i) was changed to 99 in image (j), etc., so that the
images have identical histograms but still are different. It is
of interest to note that flipping the entire image does not
change the circular Fourier transform. Therefore, the
method is not able to differentiate between the flipped
and the original image. Furthermore, all of the dataset
images have been degraded by an impulse noise varying
from 0% to 8% and a transformation (rotation and scaling)
Fig. 4. Twenty silhouettes of Aircraft.
noise (Rodtook and Makhanov, 2005). Additionally, in the
case of the NIST data we also considered an interesting
effect of the boundary noise appearing after separation of
touching letters by means of morphological noise removal
employing two erosions and one dilation. We present
experiments with the B-spline wavelet filters, however,
orthogonal wavelets such as the Daubechies wavelets 2, 4
and 6 and the Coiflet wavelets were tested as well. The
experiments have shown that the biorthogonal B-splines
with the underlying FIRFs were always performing slightly
better. Denote our proposed algorithm by FB-P-AN-
MAA-FCM-P, FB stands for the proposed filter bank, P
for pruning, AN for ANOVA, MAA for the modified
Apriori algorithm, FCM for Fuzzy C mean clustering, P
for partially supervised FCM, so that FCM-P corresponds
to the FCM with cost function (10). Furthermore, FCM-E
and FCM-M correspond to the unsupervised FCM
endowed with the Euclidian and the Mahalanobis distance
respectively. Finally, the notation I–V is used when the
features were selected individually based on the between-
to within-class variance ratio. The comparisons of an
average classification rate of the proposed FB-P-AN-
MAA-FCM-P versus the most popular selection methods
and moment invariants are shown in Table 1. Table 1
includes degradation by all types of noise: rotation, trans-
lation, scaling and a random impulse noise g.

Table 1 illustrates advantages of our approach. For
instance, ‘‘Shen-I–V’’ applied to the NIST symbols has
85.94% average recognition rate, whereas our method pro-
vides recognition rate of about 95.46%. The table shows
that every component of the algorithm is almost equally
important. Namely, combining the FB with the FCM
shows a 3% increase. Adding the Mahalanobis distance
produces a 6% increase. Finally, applying partial supervi-
sion adds another 3% so that the recognition rate becomes
improved by 9%.

Tables 2–7 show the average classification rate for differ-
ent type of image distortions such as the random impulse
noise, transformation noise, segmentation noise, scaling
as well as certain combinations of them. In each case the
algorithm outperforms Shen-IV, Shen-FCM-M, as well as
Zernike-IV and Fourier–Mellin-IV. The efficiency of the



Table 1
Average classification rate within the three databases

Algorithms Classification rates %

Aircraft silhouettes 0 6 g 6 8% NIST characters 0 6 g 6 6% Logo silhouettes 0 6 g 6 4.5%

1. FB-P-AN-MAA-FCM-P 95.38 95.46 92.81
2. FB-P-AN-MAA-FCM-M 91.19 92.76 88.72
3. FB-P-AN-MAA-FCM-E 88.05 89.73 84.30

3. Shen-FCM-M 88.51 90.94 85.76
4. Shen-FCM-E 85.17 89.1 83.01

5. Shen-I–V 82.94 85.94 79.12
6. Zernike-I–V 82.19 85.03 78.93
7. Fourier–Mellin-I–V 77.61 79.31 73.72

Table 2
Aircraft images, impulse noise

Algorithm Noise % 0 6 g < 2 2 6 g < 4 4 6 g < 6 6 6 g < 8
SNR (dB) >15.9 >12.5 >10.4 >9.0

FB-P-AN-MAA-FCM-P 98.83 95.49 91.52 81.21
FB-P-AN-MAA-FCM-M 97.71 92.91 85.13 67.09
Shen-FCM-M 96.28 90.39 81.16 61.31
Shen-I–V 95.89 85.35 72.39 53.49
Zernike-I–V 95.52 84.33 70.91 51.41
Fourier–Mellin-I–V 90.24 77.78 59.43 43.62

Table 3
Aircraft images, impulse noise combined with rotation and scaling

Algorithm Noise % 0 6 g < 2 2 6 g < 4 4 6 g < 6 6 6 g < 8
SNR (dB) >15.9 >12.5 >10.4 >9.0

FB-P-AN-MAA-FCM-P 98.45 94.66 90.28 78.53
FB-P-AN-MAA-FCM-M 95.76 91.08 81.83 62.26
Shen-FCM-M 95.01 89.84 78.02 54.25
Shen-I–V 92.88 82.3 65.36 45.01
Zernike-I–V 92.24 80.36 62.43 41.26
Fourier–Mellin-I–V 87.76 71.43 47.01 34.74

Table 4
The NIST characters, impulse noise and segmentation noise

Algorithm Noise % 0 6 g < 1.5 1.5 6 g < 3 3 6 g < 4.5 4.5 6 g < 6
SNR (dB) >16.7 >14.0 >12.1 >10.7

FB-P-AN-MAA-FCM-P 99.01 95.83 90.85 86.23
FB-P-AN-MAA-FCM-M 98.97 93.92 87.98 72.12
Shen-FCM-M 98.12 91.82 84.83 67.98
Shen-I–V 97.04 88.65 80.57 61.05
Zernike-I–V 96.9 87.73 78.03 58.24
Fourier–Mellin-I–V 94.27 81.82 70.12 49.61
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algorithm with the reference to the preceding techniques
becomes significant when increasing the noise intensity.
The most impressive result is an almost 44% absolute
increase (55% relative increase) with regard the Fourier–
Mellin-IV in the case of the aircraft silhouettes degraded
by 6–8% impulse noise and the rotation noise (Table 2).

The rotation and segmentation noise affect the NIST
characters (Table 5) more significantly than the aircraft sil-
houettes and the UMD logos (Tables 3 and 7) because the
characters are thin objects with small area, so the relative
impact of the noise is higher. Note, that we applied the
Shen’s algorithm exactly as it was presented in (Shen and
Ip, 1999). The tables show that the algorithm will benefit
from some steps we introduced as well. For example, in
each table Shen-FCM-M outperforms Shen-I–V. Zernike-
FCM-M will also display a similar accuracy increase. How-
ever, pruning is not applicable because Shen’s invariants
are not structured as a tree. The MAA can be applied to



Table 5
The NIST characters, impulse noise and transformation noise

Algorithm Noise % 0 6 g < 1.5 1.5 6 g < 3 3 6 g < 4.5 4.5 6 g < 6
SNR (dB) >16.7 >14.0 >12.1 >10.7

FB-P-AN-MAA-FCM-P 98.85 94.4 88.34 80.51
FB-P-AN-MAA-FCM-M 96.83 92.96 84.98 67.24
Shen-FCM-M 96.21 90.84 81.15 60.87
Shen-I–V 94.35 85.76 72.17 50.93
Zernike-I–V 92.24 83.34 67.92 46.31
Fourier–Mellin-I–V 89.0 77.08 61.12 39.9

Table 6
Modified UMD logos, impulse noise

Algorithm Noise % 0 6 g < 1.5 1.5 6 g < 3 3 6 g < 4.5
SNR (dB) >17.7 >15.1 >13.2

FB-P-AN-MAA-FCM-P 96.13 90.78 82.57
FB-P-AN-MAA-FCM-M 94.06 85.71 74.70
Shen-FCM-M 92.87 84.91 72.85
Shen-I–V 91.09 80.34 69.07
Zernike-I–V 90.91 79.77 68.98
Fourier–Mellin-I–V 88.23 75.96 65.97

Table 7
Modified UMD logos, impulse noise and transformation noise

Algorithm Noise % 0 6 g < 1.5 1.5 6 g < 3 3 6 g < 4.5
SNR (dB) >17.7 >15.1 >13.2

FB-P-AN-MAA-FCM-P 95.49 89.02 77.10
FB-P-AN-MAA-FCM-M 92.61 79.14 66.91
Shen-FCM-M 89.87 74.81 62.14
Shen-I–V 87.06 72.18 58.03
Zernike-I–V 86.76 70.36 57.61
Fourier–Mellin-I–V 85.02 63.71 50.03
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Shen’ invariants, but it would not increase the recognition
rate. It can only reduce the computation time. Observe the
most interesting cases. In case of the NIST characters (see
Table 5, 4.5–6% noise) and a combination of the impulse
noise and the transformation noise Shen-IV, Zernike-IV
and Fourier–Mellin-IV display 50.93%, 46.31% and
39.90% recognition rate respectively whereas the proposed
filter bank invariants 80.51%. In case of the UMD logos
and 3–4.5% random-valued impulse noise combined with
the transformation noise the Shen-IV, Zernike-IV and
Fourier–Mellin-IV display 58.03%, 57.61% and 50.03%
recognition rate respectively whereas the proposed filter
bank invariants show 77.10% recognition rate.

7. Conclusions

The proposed multiresolution moment invariants extend
the idea of applying wavelets for rotation invariant pattern
recognition. Our approach based on the analysis of the
high and the low-frequency filter bank coefficients com-
bined with elimination of the noise-sensitive features and
the modified Apriori-Fuzzy C-mean partly supervised
selection leads to a tangible improvement of the recogni-
tion rate with the reference to the conventional methods.
We obtain an accuracy increase ranging from 5% to 27%
depending on the noise level. A large number of testing
images and the variety of the sources of the noise makes
it possible to conjecture that the proposed technique per-
forms better than the existing ones for other applications.
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