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Abstract We propose vessel vector-based phase portrait
analysis (VVPPA) and a hybrid between VVPPA and a clus-
tering method proposed earlier for automatic optic disk (OD)
detection called the vessel transform (VT). The algorithms are
based primarily on the location and direction of retinal blood
vessels and work equally well on fine and poor quality im-
ages. To localize the OD, the direction vectors derived from
the vessel network are constructed, and points of convergence
of the resulting vector field are examined by phase portrait
analysis. The hybrid method (HM) uses a set of rules acquired
from the decision model to alternate the use of VVPPA and
VT. To identify the OD contour, the scale space (SS) approach
is integrated with VVPPA, HM, and the circular approxima-
tion (SSVVPPAC and SSHMC). We test the proposed com-
bination against state-of-the-art OD detection methods. The
results show that the proposed algorithms outperform the
benchmark methods, especially on poor quality images.
Specifically, the HM gets the highest accuracy of 98% for
localization of the OD regardless of the image quality.
Testing the segmentation routines SSVVPPAC and SSHMC
against the conventional methods shows that SSHMC per-
forms better than the existing methods, achieving the highest
PPVof 71.81% and the highest sensitivity of 70.67% for poor
quality images. Furthermore, the HM can supplement practi-
cally any segmentation model as long as it offers multiple OD
candidates. In order to prove this claim, we test the efficiency
of the HM in detecting retinal abnormalities in a real clinical

setting. The images have been obtained by portable lens con-
nected to a smart phone. In detecting the abnormalities related
to diabetic retinopathy (DR), the algorithm provided 94.67
and 98.13% for true negatives and true positives, respectively.
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1 Introduction

One in ten of the patients with diabetes has a high risk of devel-
oping diabetic retinopathy (DR) [1]. Therefore, they are sug-
gested to attend an annual clinical checkup. Early screening of
eye diseases by ophthalmologists can help patients having dia-
betes to receive proper treatment at an early stage. Astonishingly,
according to the statistics provided by the World Health
Organization (WHO), the number of people across the world
with diabetes has risen very rapidly from 108 million in 1980
to 422 million in 2014 [2]. This implies the necessity of auto-
matic screening systems to assist ophthalmologists in diagnosing
early stages of ophthalmic conditions such as glaucoma, DR, or
age-related macular degeneration [3] using computer-assisted
diagnostics. Since eye fundus imaging is a frequent clinical pro-
cedure, the retinal fundus images are commonly used for a pre-
liminary diagnosis and detection of suspicious cases.

The optic disk (OD) is one of the crucial points in a retina. It
is important for establishing a reference frame for other regions
of clinical importance such as the fovea or macula and to diag-
nose the abnormalities. The OD usually appears in healthy ret-
inal images as a bright, yellowish, circular, or oval object, rough-
ly one sixth the width of the image in diameter [4], which is
partly entered by optic nerves. Any irregularity in the appearance
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of the OD is a sign of abnormalities or diseases such as glauco-
ma, DR, or hypertensive retinopathy [5].

Conventional OD detection algorithms usually rely on the
assumption that the OD appears in a central position as a
bright and circular object of a certain size, characterized by a
certain variation of the gray level (entropy). Various re-
searchers have attempted to identify the OD center as the
largest cluster of bright pixels. The existing methods report a
success rate up to 100%. Similar ideas are exploited by
template-matching-based techniques [6–8].

A survey on the recent literature byWinder et al. [9] cited 38
papers on OD localization and segmentation. In particular, prin-
cipal component analysis, active contour models (snakes), wa-
tershed transforms, and their combination were proposed in
[10–13]. Other models include algorithms based on intensity
variation [14], Hough transform/fuzzy hybrid neural network
[15], a template-based approach combined with morphological
operations [16], and the curvelet transform [17–19].

Pereira et al. [20] analyzed the presence of brightness on a
series of blurred images and applied an ant colony optimiza-
tion algorithm and anisotropic diffusion. OD localization
based on an approximate nearest neighbor field was proposed
by Ramakanth and Babu [21]. Sopharak et al. [22] apply a
two-class Bayesian classifier and mathematical morphology.
The circular Hough transform was proposed by Azuara-
Blanco et al. [23]. However, Zhu et al. [24] showed that the
performance of the method could be very poor even when the
shape was only slightly non-circular.

One of the most efficient algorithms successfully tested
against many existing methods is proposed by Lu [25]. The
modification of the circular transform (CT) combined with eval-
uation of the brightness has been proven to be more efficient,
more accurate, and faster than other state-of-the-art methods
such as the morphological approach proposed by Welfer et al.
[26], a vessel’s direction-matched filter proposed by Youssif
et al. [27], localization using dimensionality reduction of the
search space proposed by Mahfouz and Fahmy [28], genetic
algorithms proposed by Carmona et al. [29], and the local re-
finement active contour model by Giachetti et al. [30]. Lu’s
method, first, localizes the OD based on a probability map con-
structed from the image gradient and intensity in the horizontal
and vertical directions. The circular transformation is applied
next, to detect the shape of the OD. An accuracy of about
98.77% is reported (considerably higher than the competing
methods).

However, a major drawback of the feature-based approaches
including CT of Lu (CTL) is that on poor quality images the
method may generate multiple false ODs. Moreover, in these
cases, physical appearance such as shape, color, brightness, or
size of the actual OD becomes abnormal. An OD obscured by
blood vessels or only partially visible (blur, shadows, noise)
could be totally misclassified. Besides, precise OD identification
based on the abovementioned features could be sensitive to

pathologies such as white/yellow lesions, exudates, or bright
artifacts appearing on the retinal photographs [31].

Another important subclass of the detection algorithms is
based on the convergence of the vascular network to the OD.
However, only a few existing methods exploit this feature.
Akita and Kuga [32] traced the parent-child relationship be-
tween blood vessel segments, tracking back to the center of
the OD. Chrastek et al. [33] checked the area where vertically
oriented vessels converge as a single line of infinite length.
Consequently, the detection of the convergence area was re-
duced to the line intersection problem.

The least square polynomial curve fitting algorithm and
multi-level thresholding technique were applied by Kavitha
and Devi [34] to localize the OD by detecting the strongest
convergence point of blood vessels. A geometrical parametric
model was proposed by Foracchia et al. [35] using the para-
bolic approximation of the vascular network to describe the
general direction of retinal vessels at any given position in the
image. The vessel directions were parameterized and the sim-
ulated optimization was used to obtain the coordinates of the
center of the OD.

Niemeijer et al. [36] applied a k-nearest neighbor regression
and a circular template on all vessel pixels to locate the OD.
Proposed by Dehghani et al. [37], the OD was identified by
finding the region having the highest density of vessels, corners,
and bifurcation points using Harris corner detection. This algo-
rithm was effective under invariance of rotation of retinal im-
ages, whereas the presence of pathological regions needed to be
distinguished, and the desired OD contour required high vari-
ance contrast between OD and the surrounding background.

Welfer et al. [26] and Zhang and Zhao [38] used the assump-
tion that the major vessels line up horizontally. The major draw-
back of these approaches is that they are not rotationally invari-
ant. Vascular networks and intensity information were combined
to examine the entropy of vascular directions inMendonca et al.
[39]. The distribution of vessel orientations around an image
point is quantified using the entropy of vascular directions.
The OD localization is done by searching for the high intensity
image area that has maximal values of entropy. The active con-
tour (snake) was employed by Semashko et al. [40]. The posi-
tions of the vessels were used to correct the pressure force of the
active contour to improve the convergence of the snake to the
OD center.

Rangayyan et al. [41] used Gabor filters to detect vessels to
produce the orientation field. The resulting vector field was an-
alyzed by the phase portrait analysis (PPA) to detect the points of
convergence. The method reported an accuracy up to 100% on
the DRIVE database [42]; however, the method failed when
applied to poor quality images from STARE [43] (69.1%).
The main reason for that is that the vessels extracted from the
poor quality images usually create an inappropriate vector field.
Consequently, the PPA generates multiple convergence points
and a false OD.
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In this paper, we show that a proper vector field can be
generated using a certain set of features at the bifurcation
points. These features (rather than the direction of blood ves-
sels) combined with some additional vectors allow us to pro-
cess poor quality images. For instance, the accuracy of the
PPA on STARE has been increased to 99% with the
reference to [43].

Another outstanding vessel convergence techniquewas intro-
duced by Hoover and Goldbaum [4]. The method, called fuzzy
convergence (FC), creates a fuzzy segment of which an area was
provided by a voting scheme for corresponding pixels of each
segmented vessel. An image map, representing the strong points
of the convergence, was calculated by summation of votes. The
map was then smoothed and the strongest convergence points
are detected by thresholding. The FC technique was combined
with a feature-based approach, which employs illumination
equalization to minimize the large intensity variation at different
scales. Testing on the STARE database showed acceptable per-
formance overall (89%) and full success on the healthy retina
images (100%). Nevertheless, the hierarchical structure of the
retinal vessels and their importance were not considered. The
retinal vessel network consists of both skeletonized primary and
secondary attributes to the optic nerve head. The main vessels
converge to the OD, whereas the secondary vessels are posi-
tioned randomly.

The most recent approaches include gravitational law-based
method proposed by Alshayeji et al. [44], a variety of AI-based
methods such as the firefly algorithm by Rahebi and Hardalac
[45], ant colony optimization by Pereira et al. [20], and
convolutional neural network developed by Tan et al. [46].

Other approaches include ensemble-based framework by
Harangi and Hajdu [47], morphological approach [26], active
contours [13, 48, 49], and parabolic approximation by Wu
et al. [50]. A feature-based approach for pathological images
has been proposed by Xiong and Li [51]. The algorithm em-
ploys a confidence score derived from vessel direction, inten-
sity, OD edges, and size of the bright region. Parallel software
for the localization of the OD in retinal fundus color images
has been implemented with the graphics processing units in
Díaz-Pernil et al. [52]. Wavelets, mathematical morphology,
and Hessian-based multi-scale filtering are used in Rodrigues
and Marengoni [53]. An equiripple low-pass finite impulse
response filter to suppress the response of the blood vessels
and detect the OD has been designed in Bharkad [54]. A
global vessel symmetry component count and local vessel
symmetry inside the OD region were used in Panda et al. [55].

However, only a few algorithms use the structure and the
direction of the vessel network, which is an important feature
in case of poor quality images.

In this paper, we use the fact that the geometry of the vessels
converging at bifurcations indicates the direction to the OD. In
order to find these directions, the smallest branching angle is
evaluated at each bifurcation. We assume that the Bmain^ vessel

directed to the OD is opposite to the smallest branching angle.
This assumption is not always correct when we consider patho-
logical cases comprising individual fuzzy and distorted blood
vessels. However, for the majority of the images (even the poor
quality images), the smallest bifurcation angle points in the cor-
rect direction. Moreover, in order to define the main vessel, we
consider not only the branching angle but also several selected
features as well, i.e., thickness, tortuosity, and intensity.

In order to improve the quality of the resulting vector field,
sole vessels are also taken into account, based on their impor-
tance. Besides, the bifurcation vectors have been supplemented
by the so-called Mahfouz’s vectors [28] derived from the obser-
vation that the vessels are positioned predominately along the
vertical direction.

Our new technique is based on interpolation of the above
representative vectors throughout the entire image and analyzing
the resulting vector field by phase portrait analysis (VVPPA).
The VVPPA approach is combined with the vessel transform
(VT) [56], based on clustering the vessels into the binary trees
and using a decision rule-based method. The combination of
VVPPA and VT is called the hybrid method (HM). The HM is
integrated into the SS analysis proposed in [57].

The novelty of themethod is the use of the PPA applied to the
interpolated vector field constructed from the bifurcation points,
Mahfouz’s vectors, sole vessel vectors (SVV), and the bouncing
vectors (BV) (See the next section). The vectors are selected by
using an advanced SVM and decision tree models. The method
combines the PPA andVT. The combination is also based on the
decision tree, which includes several specific vessel-based
features.

The new algorithm has been tested on fair and poor quality
retinal images from two databases (172 images) against the FC
method [4], a recent modification of the CT [25], and the VT
[56] applied without the hybridization with VVPPA.
Furthermore, the SS boundary detection [57] was tested with
and without the VVPPA and the HM. The numerical experi-
ments demonstrate that the proposed algorithms outperform
the baseline methods in terms of the precise localization of the
OD and the accuracy of segmentation in the framework of the
SS scheme. Finally, we test the efficiency of the HM in detecting
retinal abnormalities in a real clinical setting (182 images). The
images have been obtained by portable lens connected to a smart
phone.

2 Hybrid OD detection method

2.1 OD localization

In this section, we present vessel vector-based phase portrait
analysis approach (VVPPA) and a HM comprising VVPPA
and VT.
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2.1.1 Vessel vector-based phase portrait analysis approach

Five types of vectors are defined in the framework of VVPPA,
namely

1) The shifted leading bifurcation vectors (SLBV)
2) The SVV
3) The Mahfouz vectors (MV)
4) The BV
5) The interpolated vectors

The SLBV are constructed by considering bifurcations
consisting of three vessels. A circle centered at a junction is
drawn and the intersection points of the circle with the vessels
are marked. Normalized vectors from the junction to the inter-
section are the bifurcation vectors (Fig. 1). Next, the leading
vectors are selected from the bifurcation vectors using the oppo-
site angle, tortuosity, thickness, and contrast. The opposite angle
of a vector is an angle between the other two vectors originated
from the same bifurcation point. Tortuosity is the ratio of the
distance to the displacement of two end points of the vessel
segment. Thickness is the average width of the vessel segment
considered from the bifurcation point to the intersection point.
Contrast is the difference of the cumulative intensity between the
vessel segments and their surrounding background from the
bifurcation point to the intersection point. The angle, tortuosity,
thickness, and contrast are normalized. The classification is
based on the SVM method [58] applied using training and test-
ing sets. The rules obtained from the training set are applied to
the testing collection. Once the leading vector is obtained, we
shift it along its direction to the end of the corresponding vessel
(See Fig. 1). Usually, this step improves the OD detection.

The SVV are often the main vessels. Therefore, they con-
tribute useful information about the OD location. To generate
the SVV, we select the sole vessels, which are not too short,
not too thin, and not too faint using a threshold selection
technique. For each SV, we randomly pick a direction and
normalize the resulting vector. The directions of the SVV are
to be corrected later by the VVPPA. Furthermore, the OD
approximation proposed byMahfouz and Fahmy [28] is based
on an observation that the retinal arteries and veins emerge
from the ODmainly in the vertical direction and then progres-
sively branch into main horizontal vessels. Thus, the x-loca-
tion of the OD yields the greatest difference between the ver-
tical and horizontal edges. Further, we consider a window
with the length equal to the average diameter of the OD mov-
ing in the horizontal direction. The window containing the
largest number of bright pixels defines the y-location of the
OD. The four corresponding MVare shown in Fig. 2.

The Mahfouz’s approach is experimentally proven to be
fairly efficient with up to 92.6% accuracy [28]. It usually
works well when the vessel structure is complete and the
OD is clear. We thus employ MV to be a part of the proposed

algorithm. When the quality of the image is poor, the
Mahfouz’s approach may not yield a good accuracy.
Nevertheless, in many cases, the MVs contribute to the accu-
racy of the HM.

The BV are created with the purpose to improve the con-
vergence of PPA. A bouncing vector of a vector V is a unit
vector starting at the edge of retinal image and pointing oppo-
site to V. In this work, the BV are derived from SLBV, SVV,
and MV.

Finally, the interpolated vectors are constructed at every
grid point of the retinal image using triangulation of the image
and linear interpolation. The PPA assumes that the vector flow
v changes linearly in the neighborhood of the critical point as
follows, v = Ap, where p = (x, y) is the Cartesian coordinate
and A the corresponding matrix. The matrix is approximated
by the least square method applied to v in the moving window
centered at p. The flow patterns characterized by the eigen-
values of matrix A are shown in Table 1, where λi are the
eigenvalues, Ri = Reλi, Ii = Imλi, and i = 1, 2. Table 1 shows
the patterns used in this study (See [59] for the entire collec-
tion). The proposed vector field classifier employs a continu-
ous formulation given by

C λ1;λ2ð Þ ¼ rs; λ1 > δ;λ2 > δ;
0; otherwise;

�
ð1Þ

where δ is a threshold to exclude ill-conditionedmatrices char-

acterized by small eigenvalues, r ¼ min λ1j j; λ2j jð Þ
max λ1j j; λ2j jð Þ and

s ¼ sign λ1;λ2ð Þþ1
2 . The term r includes converging or diverging

configurations, i.e., attracting and repelling stars, as well as
strong attracting and repelling nodes, such that C(λ1,λ2) ≈ 1
(See Table 1) [59].

Therefore, the PPA returns the location of the converging
configurations; one of which points to the OD. The PPA al-
gorithm is explained below

Fig. 1 An illustration of how a shifted leading bifurcation vector is
obtained
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1) Input: SLBV, MV, BV, and SVV
2) Collect the SLBV, MV, BV, and SVV in a joint vector

field.
3) Interpolate the vector field for every point of the image.
4) Using classifier (1) evaluate the PPA score for every point

and create the PPA image.
5) Threshold the PPA image and find PPA regions.
6) Find a final PPA region using the maximum likelihood

estimation based on: mean thickness of the segmented
vessels, the contrast of segmented vessels compared to
the background, the density of segmented vessels, and
the PPA score.

7) Find the centroid of the final PPA region.

8) Validate the direction of the SVV: if the SVV points op-
posite to the direction to the centroid, flip the vector and
recalculate the PPA image. Repeat for every SVV.

9) Output: the PPA region, the centroid of the PPA region.

Figure 3 illustrates the PPA techniques.

2.1.2 Hybrid method

An enhanced version of VVPPA is called the HM. The HM
combines the VT proposed in [56] and VVPPA. The VT ap-
proximates the location of the OD by finding a centroid of a
collection of points, of which the total sum of the distances

Table 1 Phase portrait analysis of a 2D vector flow

Fig. 2 Mahfouz vectors: (top
left) original image, (topright) the
greatest difference of the number
of pixels in the vertical and
horizontal edges, (bottom left) y-
location vs. the maximum number
of bright pixels in a reference
square at the x-location, (bottom
right) the Mahfouz vectors
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from each point in this collection to all vessel clusters is min-
imal. This HM aims to carry out the best accuracy of the VT
andVVPPA. To localize OD, the HM creates a decisionmodel
to select an appropriate approach (VT or VVPPA). The deci-
sion is based on the number of bifurcation vectors, the number
of SVV, and the PPA score. On the most basic level, the model
switches to VT, if the number of basic vectors is not sufficient
to conduct an appropriate PPA.

As the HM builds the model from the both approaches, its
performance on a series of images is usually better than VTor
VVPPA applied independently. Further, the HM reduces the

computational time to approximately 50% relative to each
individual approach.

2.2 Scale space algorithm with VVPPA/HM for OD
segmentation

The scale space (SS) theory was originally proposed by Witkin
[60] to create a multi-scale representation of signals in 1D.
Lindeberg [61] applied the SS to image segmentation. The SS
theory was applied by Duanggate et al. [57] for OD segmenta-
tion in the retinal images. In their work, a series of images

Fig. 3 VVPPA algorithm: (top
left) initial vectors SLBV (black),
MV (gray), and BV (white), (top
right) corresponding PPA from
the initial vectors, (middle left)
the first SVV, (middle right) after
the direction correction of the first
SVV, (bottom left) interpolated
vector field and the corresponding
PPA, (bottom right) centroid
(rectangle), PPA boundary
(dashed line), and the ground
truth boundary (black line)

Fig. 4 Examples of fair images
(top) and poor images (bottom)
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resulting from applying the Gaussian blurring was constructed.
The blobs (closed contours) extracted from the blurred images
were linked and represented as a scale-space blob tree. Merging
is applied to the blobs that meet the criteria of adjacency and
stability. TheOD is selected from these candidate blobs based on
the size, entropy, intensity, and compactness. We integrate the
SS scheme with VVPPA and with HM. In the framework of the
SSVVPPA approach, the SS is modified by employing the PPA
score along with the original features used in Duanggate’s work.
For the SSHM approach, the SS theory is combined with either
the VT [56] or VVPPA. The choice of method to be combined
with SSC depends on the decision returned by the HM. If the
HM returns VT, the VT score is considered together with the
original features used by the SS. As the boundary of the OD

blobs obtained from SS can be wavy, we approximate it by the
best-fit circle (SSC).

2.3 Numerical experiments

We consider a standard database STructured Analysis of the
REtina (STARE) [43]. The fundus photographs from STARE
were captured by a TopCon TRV-50 fundus camera with 35°
field of view. Each image was digitized to create a
605 × 700 pixels at 24 bits per pixel. Another dataset is collected
to detect retinopathy of prematurity (ROP) by Prof. Sarah
BarmanwithKingstonUniversity ofUK.All digital images from
ROP were taken from patients with non-dilated pupils using a
KOWA-7 non-mydriatic retinal camera with a 45° field of view.

Fig. 5 The SVM decision model:
dots—feature values of leading
vectors, circles—feature values
the non-leading vectors

Fig. 6 SSVVPPAC decision
trees: (left) the ROP collection,
(right) the STARE collection
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The images were stored in JPEG format, 640 × 480 pixels at
24 bits per pixel. We classify images into two categories. The
bright, round, and clear ODs are classified visually as fair. The
rest is considered poor.

There are 91 images in the ROP collection with an average
OD diameter of 47.9 pixels. Sixty images are classified as fair

and 31 as poor. STARE includes 81 images with an average
OD diameter of 103.9. There are 31 images of fair quality and
50 images of poor quality. Examples of fair and poor retinal
fundus images are displayed in Fig. 4.

To evaluate the proposed methods, hand-drawn ground
truth (GT) images were obtained from human experts. To
minimize the human expert bias, the GTs were obtained
from three ophthalmologists from Thammasat University
Hospital. Each ophthalmologist hand-drew the OD con-
tour on each retina image from the two collections three
times. The inter-observer variability is 0.86 and 0.91 for
the ROP and STARE collections, respectively. The intra-
observer variability is 0.91 and 0.93 for the ROP and
STARE collections, respectively.

Since the two collections of the test images have been
obtained by different devices with different illumination con-
ditions, they require different decision models for leading vec-
tor classifications.

We employ an SVM classifier with the Gaussian kernel [62]
trained using the standard 70–30% ratio between the training
and the testing data. An example of the decision models for
leading vector classification is shown in Fig. 5, where dots and
circles represent the feature values of the leading and non-
leading vectors, respectively. The axes represent the normalized

Fig. 7 The decision tree of the HM for OD localization (STARE and
ROP)

Fig. 8 Examples of the OD
location results: GT—black solid
line, FC—light gray circle,
CTL—dark gray square, VT—
gray triangle, VVPPA—black
diamond, HM—white hexagon
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values of three features: the opposite angle, the tortuosity, and
the intensity. The black line indicates the decision boundary. The
accuracy of the SVM model on the testing set is 96.61 and
94.11% for ROP and STARE, respectively.

In order to classify the candidate blobs produced by the SS
procedure into the OD and non-OD groups, we use the automat-
ic decision tree generator available from the Waikato
Environment for Knowledge Analysis [40]. The 70/30 ratio
was used for the training and testing. The corresponding

decision tree requires the following features: the PPA score, size,
compactness, entropy, and intensity denoted by p, s, c, e, and i,
respectively. The following decision trees shown in Fig. 6 are
used for classification of the OD. The constructed decision trees
reveal that all features except intensity are important in detecting
the OD.

As far as the SSHMC is concerned, the decision model
includes the number of SLBV, SVV vectors, and the PPA
score (See Fig. 7).

Table 2 Accuracy of the OD localization using FC, CTL, and VT vs. VVPPA and HM, in percent

Collections ROP STARE Overall average Overall average,
fair

Overall average,
poor

Image quality/method Fair Poor Fair Poor

FC N/A N/A 90.32 88.00 N/A N/A N/A

CTL 88.33 64.52 100.00 98.00 87.71 94.16 81.26

VT 95.00 96.77 96.77 94.00 95.64 95.88 95.38

VVPPA 100.00 83.87 100.00 96.00 94.97 100.00 89.93

HM 100.00 96.77 100.00 98.00 98.69 100.00 97.38

Fig. 9 Examples of the OD
segmentation: 1—GT, 2—
SSVTC, 3—SSC, 4—CTL, 5—
SSVVPPAC, 6—SSHMC
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3 Results

In this section, we test VVPPA and the HM against the FC
method [4], a recent modification of the CT proposed by Lu
(CTL) in [25] and our previous VT method [56]. For the OD
segmentation, we compare the results of SSVVPPAC and
SSHMC against the SSC, CTL, and SSVTC [41].

3.1 Performance of the VVPPA and HM in locating
the OD

We test the VVPPA and HM against CTL method [25], FC
method [4], and the VT method [56]. Figure 8 shows intro-
ductory examples of the OD location obtained by the VVPPA
and HM vs. the three baseline approaches. VVPPA and HM
generally perform better. The accuracy of OD localization is
evaluated as follows. If the OD location is contained entirely
inside the circle centered at the GT’s centroid (the radius
equals to the average GT radius of the collection), we consid-
ered this a correct result. The ratio of the correct cases to the
total number of images yields the average accuracy. CTL is
considered successful if the centroid of the CTL contour is
located inside the GT contour.

The accuracy of the five competing OD localization
methods tested against VVPPA and HM is shown in

Table 2. The proposed approach outperforms CTL on both
test collections and shows a better success rate against CTL
by 7.26 and 10.98%, using VVPPA and HM, respectively.
Even though VVPPA shows a reduction of accuracy against
VT by 0.67%, the HM works better than VTwith an absolute
improvement of 3.05%. For all image collections differentiat-
ed by image quality, the absolute improvements of VVPPA
and HM are noticeably better than CTL by 8.67 and 16.12%,
respectively, for the poor sets and by 5.84 for the fair sets.
When VVPPA and HM are compared to VT, they show an
improvement in the fair sets by 4.12%. While the VVPPA
success rate is lower than VT by 5.45%, the HM outperforms
VT by 2.00% for the poor sets. Finally, among the tested
methods, the HMyields the best performance in all categories.

3.2 Performance of SSVVPPAC and SSHMC

In this section, we present the results of the OD segmentation
based on the SS algorithm and our OD localization approach
along with the circular edge adjustment [57]. SSVVPPAC and
SSHMC are compared with three OD segmentation methods:
CTL, SSC, and SSVTC. Figure 9 shows the qualitative results
of OD segmentation. The proposed method has been com-
pared with the baseline methods in Table 3 in terms of the
average sensitivity of all collections. The SSHMC provides
an outstanding absolute improvement over CTL, SSC, and
SSVTC by 14.21, 12.91, and 0.11%, respectively. For the
average PPV, SSHMC shows an absolute improvement
against CTL and SSC, respectively, by 7.05 and 11.36%,
and approximately the same average PPVas SSVTC.

Furthermore, the proposed approach performs better for the
fair quality sets in all collections, for both sensitivity and the
PPV. The SSVVPPAC and SSHMC show the largest absolute
improvement (sensitivity and PPV) for the fair set for the both
collections by 9.01 and 0.44% against CTL, 5.77 and 4.61

Table 3 The accuracy of the OD segmentation using CTL, SSC SSVTC, SSVVPPAC, and SSHMC, in percent

Evaluation Methods ROP STARE Overall average Overall average, fair Overall average, poor

Fair Poor Fair Poor

Average sensitivity CTL 74.29 61.28 72.59 41.23 62.35 73.44 51.26

SSC 87.74 51.38 65.62 49.86 63.65 76.68 50.26

SSVTC 89.60 80.07 76.14 59.97 76.45 82.87 70.02

SSVVPPAC 89.60 72.72 75.30 59.94 74.39 82.45 66.33

SSHMC 89.60 80.07 75.30 61.26 76.56 82.45 70.67

Average PPV CTL 66.42 46.39 84.66 69.89 66.84 75.54 58.14

SSC 80.56 49.84 62.19 57.54 62.53 71.38 53.69

SSVTC 81.91 72.53 70.86 70.27 73.89 76.39 71.40

SSVVPPAC 81.91 65.17 70.05 69.10 71.56 75.98 67.14

SSHMC 81.91 72.53 70.05 71.08 73.89 75.98 71.81

Table 4 Computational time per image (≈400 × 400): CTL vs. the
proposed method

Percentage
of test
pixels (%)

No. of
radial line
segments

Average
time: CTL
(min)

Average time (min)

SSVTC SSVVPPAC SSHMC

20 40 1.57 4.85 2.55 2.85
20 180 6.63

60 40 4.29

60 180 18.84
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against SSC, and only a slight decrease by 0.42 and 0.41
against SSVTC.

For the poor quality sets, SSHMC shows a significant im-
provement in the sensitivity of 19.41, 20.05, and 0.64 when
compared against CTL, SSC, and SSVTC, respectively.
SSHMC yields a noticeably higher average PPV than CTL:
its absolute improvement against CTL is 13.67%. The maxi-
mum average PPV of SSHMC has been also improved con-
siderably by 18.12%.

Generally, the proposed approach outperforms SSC and
CTL regardless of the quality of the images and for each data
collection. In particular, when the image quality is poor, the
proposed approach outperforms the other two methods
substantially.

It should be noted that in [57], the SS method was found to
be superior with regard to OD segmentations based on the
morphological operations [22] and the circular Hough trans-
form [63]. Moreover, in [25], Lu claims to outperform a ge-
netic algorithm a direct search approach [29], a geometrical
model of the vessel structure using two parabolas [35], a fea-
ture and vessel-based approach [64], and a morphologic two-
stage approach [65]. Therefore, the proposed approach out-
performs the abovementioned methods as well.

The SSHMC is a combination of VVPPA and VT designed
to produce a better accuracy. The average improvement of
SSVVPPAC and SSHMC on both collections against CTL
method is, respectively, 12.04 and 14.21%, for the sensitivity,
and 4.72 and 7.05%, for the PPV. In turn, the improvement
produced by SSVVPPAC and SSHMC vs. SSC is, respective-
ly, 10.74 and 12.91%, for the sensitivity, and 9.03 and
11.36%, for the PPV.

3.3 Computational time

Although the CTL method is claimed to be the fastest, its
performance strongly depends on the threshold of the gray
level (to select possible candidates for the center of the OD)
and the number of radial segments used to verify the circular-
ity of the object boundary. Lu also claims that the OD center
always lies within the first 20% brightest pixels within the
probability map of the OD. However, there are a number of
poor quality images for which this is not correct. The increase
of the above thresholds increases the computational time non-
linearly. For instance, changing the percentage of the brightest
pixel threshold from 20 to 60% doubles the computational
time, whereas changing the angular step from 6° to 2° in-
creases the computational time of the CTL method by a factor
of 10. Our method, programmed in MATLAB, requires on
average of about 3-min processing on a standard database
image 600 × 750 on a Dell computer with 3.30-GHz Intel
Core i3 Processor with 4GB of random access memory.
Table 4 shows the average computational time of
SSVVPPAC and SSHMC against CTL and SSVTC.
Furthermore, SSVVPPAC and HM are twice as fast as the
VT approach, which is about 2 min per image.

3.4 Possible errors

Usually, an incorrect location of the OD produced by VVPPA
is due to insufficient vessel information, for instance, when the
resulting vector field comprises only one or two leading vec-
tors (Fig. 10, left). Another cause is the presence of vessel-like
artifacts such as shadows, lesions, and/or uneven illumination.

Fig. 10 The HM approach fails:
false OD (rectangle), GT (black
line). a Insufficient vessel
information. b Vessel-like
artifacts

Fig. 11 Retinal images are taken
using a portable retinal lens
attached to an iPhone 6s
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The artifacts can produce incorrect leading vectors and gener-
ate a false OD (Fig. 10, right)

When the case of insufficient vessel information is detect-
ed, the user is suggested to use other approaches employing
standard OD features.

4 Clinical application

The proposed HM can be used as a post-processing algorithm
on the top of any segmentation method as long as the segmen-
tation procedure offers multiple candidates for the OD.
Methods such as a basic thresholding, adaptive thresholding,
watershed segmentation, clustering, and region growing can

be integrated with the HM. Furthermore, the HM can be ap-
plied to generate seeds for such popular segmentation routines
as region growing, active contours, and the level set method.

Our clinical application includes 182 retinal images obtain-
ed from the Eye Center of Thammasat University Hospital of
Bangkok. This government hospital provides relatively inex-
pensive or even free of charge service. However, the long
waiting time before the examination and consultation with
the doctor often deters patients from using the service. This
is especially important in the case of DR since many patients
are not aware of their condition. Even when the DR-related
retinal exudates start to leak, the patient’s vision is not seri-
ously affected because the locations of the exudates could be
far away from the fovea. According to the WHO, only half of

Fig. 12 A comparison of the
quality of retina images taken
from a standard fundus
microscope (left) and an IPhone
6s camera with a portable lens
(right)

Fig. 13 Clinical application: (top
left) retinal image produced by a
smartphone, (top right) vector
field and the PPA image, (bottom
left) candidate exudates, (bottom
right) the OD has been
eliminated; the image is classified
as normal
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the patients are aware of the disease. As far as the health care
in Thailand is concerned, in 2014, Thailand had only 1080
ophthalmologists nationwide; 75% of which worked at big
hospitals in Bangkok and nearby provinces. Therefore, the
majority of the DR in the rural areas remains untreated until
the damage is irreversible or requires a high cost treatment.

Our clinical scenario is that the images are taken by an
inexpensive portable lens connected to a smart phone by a
qualified nurse prior or even instead of a visit to the doctor.
In the real clinical experiment, the images were processed
immediately by a relevant software which excludes the OD,
using the proposed technique, and detects abnormalities relat-
ed to DR using a combination of an adaptive thresholding
with regard to the image intensity [66] and the HM (See Fig.
11). The signs of DR include exudates (leakage of protein
from the vessels) and cotton-wool spots (nerve fiber layer
infarctions). The classification criterion is very simple, when
the image has at least one region of exudates, it is considered
to be abnormal.

Next, the patient is examined by a conventional retinal
imaging system and the diagnosis made by the doctor is com-
pared with that made by the software. All images are anony-
mous. The experiments have received an official ethical clear-
ance from the National Medical Counsel of Thailand. The
portable lens from Volk Optical Inc. [67] was connected to
an iPhone 6s (8-megapixel camera). The lens is characterized

by the static view of 50% and the dynamic view of 80%. The
images were automatically sent to a Google Drive from which
they were processed and classified. For simplicity, we consid-
er only two classes: a healthy retina and a retina with abnor-
malities. A generalization to various staging of DR is a future
work based on classification methods [66, 68–70].

It should be noted that the quality of retinal images obtain-
ed by the compact lens is in general poorer than that produced
by a standard fundus microscope (See Fig. 12). As a matter of
fact, classification of retinal images obtained by various com-
pact cameras attached to a smart phone represents a
standalone interesting practical problem being discussed in
the ophthalmology community for quite some time [71–75].

Clearly, the portable lens image is characterized by an in-
creased blur, artifacts, and reflections. Besides, the vascular
system is often incomplete due to the fact that the lens has
narrower field of view compared to that from a standard fun-
dus microscope. However, our experiments demonstrate that

Fig. 14 Clinical application: (top
left) retinal image produced by a
smartphone, (top right) vector
field and the PPA image, (bottom
left) candidate exudates, (bottom
right) the OD has been
eliminated; the image is classified
as abnormal

Table 5 Accuracy of the classification of the smartphone images using
the proposed method

True positive True negative False positive False negative

98.13% 94.67% 5.33% 1.87%
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the proposed HM integrated with a very basic segmentation
technique makes it possible to successfully eliminate the OD
and perform correct classification. Figures 13 and 14 illustrate
the proposed approach.

Finally, Table 5 displays the classification results obtained
using the HM applied to 182 smartphone images in the real
clinical conditions.

5 Conclusions

Anovel approach, based on a combination of VVPPA andVT,
has been proposed and verified. VVPPA localizes the OD by
detecting vessels pointing out to the OD at bifurcation points
and analyzing the resulting vector field by PPA. The vessels at
the bifurcation points are classified by SVM using a set of
appropriate features. The leading vectors have been
complemented the MVand synthesized BV created to ensure
the convergence to the OD.

The HM applies a decision tree to decide whether VT or
VVPPA should be used. Furthermore, to obtain the OD
boundary, the HM is integrated into a SS segmentation algo-
rithm. This integration generates new SS-based methods
called SVVPPAC and SSHMC. The PPA score obtained from
VVPPA is used as an additional feature by the SS approach
[57]. In turn, the HM incorporates either VT or VVPPA fea-
tures selected by the corresponding decision tree.

The numerical experiments on OD localization (two data-
bases, 172 images) demonstrate that the proposed approach
outperforms the existing methods considerably. The HM
yields the highest results: 100% accuracy for fair quality and
97.38% for poor quality images.

As far as the segmentation algorithms are concerned,
SSHMC and SSCVVPA on average outperform the bench-
mark methods. SSVVPPAC and SSHMC yield the highest
PPV and sensitivity. SSHMC and SSVVPPAC achieve up of
82.45% sensitivity on the fair set of images. Furthermore, the
HM obtains the highest sensitivity of 70.67% for the poor set
of images. The proposed algorithm also outperforms CTL,
which previously was claimed to be the best, in terms of com-
putational time.

Finally, the proposed HM has been applied in the real clin-
ical environment to prove the possibility of using the portable
smartphone lens and the proposed method to differentiate the
normal and abnormal retinal images prior to an examination
by the standard equipment. The experiments demonstrate that
the true positive measure is close to 100%, whereas the true
negative is 94.67%.
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