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a b s t r a c t

We analyse the point availability of Gaver’s parallel system supervised by a safety device. For
safety reasons, no unit is allowed to operate without supervision. The entire system is attended by
two heterogeneous repairmen. Our methodology is based on the theory of sectionally holomorphic
functions combined with the notion of dual transforms. As an application we consider Coxian repair
time distributions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

This article continues the analysis of Gaver’s parallel system
introduced in an earlier article [7]. The version of Gaver’s duplex
system introduced in [7], termed the S-system, consists of two
units (G-units) supervised by a single repairman attending to one
failed item at a time. In addition, it contains a governing device
(s-unit) whose failure causes the individual G-units to be put into
a dormant state (if not already failed) until the s-unit is repaired
by a dedicated s-repairman. On the other hand, the s-unit is
considered to be dormant if both G-units have failed. Repair times
r of a G-unit and rs of the s-unit are assumed to be drawn from
general, independent distributions.

The system is represented by a univariate process {Nt , t ≥ 0}
with 5 states:

Nt = A: The S-system is fully up,
Nt = B: The G-system is dormant, (two operational, but

dormant G-units due to an s-unit failure),
Nt = C: The S-system is partially up (one G-unit up, one down,

and the s-unit is up),
Nt = Cs: The G-system is down (both G-units down, one under

repair, the s-unit is dormant),
Nt = Ds: A failed G-unit and the s-unit are jointly under repair.
For K = A, B, C, Cs, Ds let pK (t) := Pr {Nt = K } , t ≥ 0, where∑
K pK (t) = 1. and N0 = A, a.s.
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E-mail address: makhanov@siit.tu.ac.th (S.S. Makhanov).

The purpose of the analysis is to find the point availability of
the system A(t) ≡ pA(t) + pC (t), t ≥ 0, being the probability
that the system is up (hence available). First, we use the general
birth and death technique, cf. [6] to derive a system of partial
differential equations (PDE) with regard to pK (t). Applying a
Laplace–Fourier transform to the PDE leads to a system functional
equations. In order to find A(t), a Sokhotski–Plemelj boundary
value problem is constructed from the functional equations and
then solved in accordance with the classical Sokhotski–Plemelj
Theorem [4]. According to the Theorem the solution is repre-
sented by the Cauchy integral. Therefore, in case of a Coxian
distribution a closed form solution is obtainable by means of the
Residue Theorem and the Inversion Theorem.

2. Assumptions and definitions

2.1. Assumptions

Consider the S-system satisfying the following assumptions.
Each operative G-unit has a constant failure rate λ and a general
repair time r with finite mean and distribution R(·), R(0) = 0.
The operative s-unit has a constant failure rate λs and a general
repair time rs with finite mean and distribution Rs(·), Rs(0) = 0.
All random variables involved are assumed to be independent and
any repair is perfect restoring each unit as-good-as new.

2.2. Definitions

The subsection introduces definitions required for rigorous
mathematical justification of the procedure outlined in Section 1.

https://doi.org/10.1016/j.orl.2019.06.004
0167-6377/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.orl.2019.06.004
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2019.06.004&domain=pdf
mailto:makhanov@siit.tu.ac.th
https://doi.org/10.1016/j.orl.2019.06.004


418 E.J. Vanderperre and S.S. Makhanov / Operations Research Letters 47 (2019) 417–420

Characteristic functions and their duals are formulated in
terms of a complex transform variable.For instance,

Eeiωr =

∫
∞

0
eiwxdR(x), Imw ≥ 0. (2.1)

Note that Ee−iωr
=

∫ 0
−∞

eiwxd {1 − R((−x)−)} , Imw ≤ 0.
The corresponding Fourier–Stieltȷ́es transforms are called dual
transforms. Without loss of generality (see Remark 4.1), we may
assume that R and Rs have density functions of bounded variation
on [0, ∞) with finite mean.

The remaining repair time of the G-unit (the S-unit) being
under repair at time t is denoted by Xt (respect. Yt ). The indicator
(function) of an event {Nt = K } is denoted by 1 {Nt = K }. The
complex plane and the real line are respectively denoted by C
and R with superscript notations such as C+ and C−. For instance,
C+

:= {w ∈ C : Imw > 0} and C−
:= {w ∈ C : Imw < 0}. The

Laplace transform of any locally integrable and bounded function
on [0, ∞) is denoted by the corresponding character marked
with an asterisk. For instance,

p∗(z) :=

∫
∞

0
e−ztp(t)dt, Re z > 0.

Let α(τ ), τ ∈ R be a bounded and continuous function. α(·) is
called Γ -integrable if

lim
T→∞

ε↓0

∫
ΓT , ε

α(τ )
dτ
τ − u

, u ∈ R

exists, where ΓT , ε := (−T , u−ε]
⋃

[u+ε, T ). The corresponding
integral, denoted by

1
2π i

∫
Γ

α(τ )
dτ
τ − u

,

is called a Cauchy principal value in double sense.
A function α(τ ), τ ∈ R is Lipschitz-continuous (L-continuous)

on R if ∀τ1, τ2 ∈ R there exists a constant c such that
|α(τ2) − α(τ1)| ≤ c|τ2 − τ1|. The function α(τ ), τ ∈ R is called
L-continuous at infinity if |α(τ )| = O

(
1
|τ |

)
, |τ | → ∞.

3. Functional equation

In this section we use the general birth and death technique
to derive a system of PDEs with regard to pK , K = A, B, C, Cs,Ds.
Applying a Laplace–Fourier transform to the PDEs yields a system
of functional equations. Finally, we verify that the conditions
of the Sokhotski–Plemelj Theorem hold. Let us introduce the
measures

pB(t, y)dy := Pr {Nt = B, y < Yt ≤ y + dy} ,
pC (t, x)dx := Pr {Nt = C, x < Xt ≤ x + dx} ,
pCs (t, x)dx := Pr {Nt = Cs, x < Xt ≤ x + dx} ,
pDs (t, x, y)dxdy := Pr {Nt = Ds, x < Xt ≤ x + dx,

y < Yt ≤ y + dy
}
.

Note that, for instance, pDs (t) =
∫

∞

0

∫
∞

0 pDs (t, x, y)dxdy. A
general birth and death technique, cf. [6] applied to {Nt} yields
the set of PDE with initial condition pA(0) = 1.

(2λ+ λs +
d
dt

)pA(t) = pB(t, 0) + pC (t, 0),(
∂

∂t
−
∂

∂y

)
pB(t, y) = λspA(t)

d
dy

Rs(y) + pDs (t, 0, y),

(
λ+ λs +

∂

∂t
−
∂

∂x

)
pC (t, x)

= (2λpA(t) + pCs (t, 0))
d
dx

R(x) + pDs (t, x, 0),(
∂

∂t
−
∂

∂x

)
pCs (t, x) = λpC (t, x),(

∂

∂t
−
∂

∂x
−
∂

∂y

)
pDs (t, x, y) = λspC (t, x)

d
dy

Rs(y),

In order to derive A∗(z), we need a functional equation obtained
by a suitable integral transformation of the PDE. For instance, the
bivariate transform∫

∞

0
e−ztE(eiwXt1 {Nt = C})dt, Re z ≥ 0, Imw ≥ 0,

called a Laplace–Fourier transform. It should be noted that our
notation is indispensable to understand the close connection of
‘‘dual’’ transforms in relation with the notion of sectional analytic
functions. See, for instance, [5, page 69], Section 4].

Applying a Laplace–Fourier transform technique to the set of
differential equations yields the functional equation(
z + 2λ(1 − Eeiwr) + λs(1 − Eeiηrs )

)
p∗

A(z) − λψ∗

C (z)Ee
iwr

+ (z + iη)
∫

∞

0
e−ztE(eiηYt1 {Nt = B})dt

+
(
z + iw + λ+ λs(1 − Eeiηrs )

) ∫
∞

0
e−ztE(eiwXt1 {Nt = C})dt

+ (z + iw + iη)
∫

∞

0
e−ztE(eiwXt eiηYt1 {Nt = Ds})dt = 1, (3.1)

valid for Re z > 0, Imw ≥ 0, Im η ≥ 0, where

ψ∗

C (z) :=

∫
∞

0
e−ztE(e−zXt1 {Nt = C})dt.

Substituting w = 0, η = iz into Eq. (3.1) yields the relation

(z+λs(1−Ee−zrs ))p∗

A(z)+(z+λ+λs(1−Ee−zrs ))p∗

C (z)−λψ
∗

C (z) = 1.

(3.2)

We recall that A∗(z) = p∗

A(z) + p∗

C (z). Thus, in order to de-
rive A∗(z), we still need two additional independent relations
between p∗

A(z), p
∗

C (z) and ψ∗

C (z). Therefore, we substitute w =

τ , η = −τ + iz, τ ∈ R, Re z > 0 into the functional equation
(3.1). We obtain

(z + λs(1 − Ee−i(τ−iz)rs ) + 2λ(1 − Eeiτr))p∗

A(z) − λψ∗

C (z)Ee
iτ r

+ γ−(τ , z)
∫

∞

0
e−ztE(eiτXt1 {Nt = C})dt − iτ

∫
∞

0
e−zt

× E(e−i(τ−iz)Yt1 {Nt = B})dt = 1, (3.3)

where γ−(τ , z) := z+ iτ+λ+λs(1−Ee−i(τ−iz)rs ), τ ∈ R, Re z ≥ 0.
An application of Rouché’s Theorem, e.g. [3, page 143] reveals

that the function γ−(w, z), Imw ≤ 0 has no zeros in C−
⋃

R.
Dividing Eq. (3.3) by γ−(τ , z) and separating functions analytic
in C+ (marked by a plus superscript) from functions analytic in
C− (marked by a minus superscript), yields the boundary value
equation

ϕ+(τ , z) − ϕ−(τ , z) = (λψ∗

C (z) + 2λp∗

A(z))φ(τ , z), τ ∈ R, (3.4)

where

ϕ+(w, z) :=

∫
∞

0
e−ztE(eiwXt1 {Nt = C})dt, Imw ≥ 0,
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ϕ−(w, z) := (iw
∫

∞

0
e−ztE(e−i(w−iz)Yt1 {Nt = B})dt

− (z + λs(1 − Ee−i(w−iz)rs ) + 2λ)p∗

A(z) + 1)/γ−(τ , z), Imw ≤ 0,

φ(τ , z) := Eeiτr/γ−(τ , z), τ ∈ R.

Let us prove that Eq. (3.4) satisfies the conditions of the
Sokhotski–Plemelj Theorem.

Property 3.1. The function φ(τ , z), Re z ≥ 0 is L-continuous on R
and at infinity.

Proof. First note that the assumption of a finite first moment
of r implies that

⏐⏐ ∂
∂τ

Eeiτr
⏐⏐ ≤ Er < ∞. Applying the Mean Value

Theorem for derivatives, e.g. [1], entails that
⏐⏐Eeiτ2r − Eeiτ1r

⏐⏐ ≤

Er |τ2 − τ1|. Hence, Eeiτr is L-continuous on R. In a similar way,
the assumption Ers < ∞ and the boundedness of 1/γ−(τ , z), Re
z ≥ 0 implies the L-continuity of 1/γ−(τ , z). Consequently, the
function φ(τ , z) being a product of two bounded L-continuous
functions is also L-continuous on R. Finally, the boundedness
of 1/γ−(τ , z) also implies the L-continuity of φ(τ , z) at infinity.
Therefore, the properties needed to satisfy the conditions of the
Sokhotski–Plemelj Theorem hold.

4. Derivation of A∗(z)

Applying the Sokhotski–Plemelj Theorem (see the Appendix)
sustained by Property 3.1 shows that the solution of Eq. (3.4) is
given by

ϕ(w, z) = Z∗(z)
1

2π i

∫
Γ

φ(τ , z)
dτ

τ − w
, w ∈ C, (4.1)

where Z∗(z) := λψ∗

C (z) + 2λp∗

A(z). Moreover, we have∫
∞

0
e−ztE(eiwXt1 {Nt = C})dt

= Z∗(z)
1

2π i

∫
Γ

φ(τ , z)
dτ

τ − w
, w ∈ C+. (4.2)

By continuity,

lim
w→0

∫
∞

0
e−ztE (eiwXt1 {Nt = C})dt = p∗

C (z),

whereas by the Sokhotski–Plemelj formulas

lim
w→0
w∈C+

1
2π i

∫
Γ

φ(τ , z)
dτ

τ − w
=

1
2
φ(0, z)+

1
2π i

∫
Γ

φ(τ , z)
dτ
τ
. (4.3)

Hence, p∗

C (z) and ψ∗

C (z) can be represented by the Cauchy-type
integrals, i.e.

p∗

C (z) = Z∗(z)(
1
2
φ(0, z) +

1
2π i

∫
Γ

φ(τ , z)
dτ
τ

). (4.4)

Similar to p∗

C (z), taking the continuity of φ+(w, z), w ∈ C+ into
account and noting that iz, Re z > 0 ∈ C+ entails that

ψ∗

C (z) = Z∗(z)
1

2π i

∫
Γ

φ(τ , z)
dτ

τ − iz
. (4.5)

Therefore, A∗(z) is determined by Eqs. (3.2), (4.4) and (4.5).

Remarks 4.1. It should be noted that the kernel φ(τ , z) preserves
all the relevant properties to ensure the existence of the Cauchy-
type integrals in (4.1)–(4.5) for arbitrary repair time distributions
R and Rs with finite first moment. In fact, the L-continuity of
φ(τ , z) on R and at infinity does not depend on the canoni-
cal structure (Lebesgue decomposition) of the underlying distri-
bution. For instance, the Lipschitz-inequality |Eeiτ2r − Eeiτ1r| ≤

Er|τ2 − τ1| always holds for any R with finite mean Er. Also

the properties of γ−(τ , z) are preserved. Consequently, our ini-
tial assumption concerning the existence of repair time den-
sity functions is totally superfluous to ensure the existence of
A∗(z), Re z > 0.

5. Application example. Coxian distributions

Note that an explicit evaluation of the Cauchy integral as a
finite sum of elementary or/and transcendental functions is in
general only possible if at least one of the repair time distribu-
tions is a Coxian distribution, i.e. a distribution with Laplace–
Stieltȷ́es transform of the form Am(z)/Bn(z), 0 ≤ m < n, Re z ≥

0, where Am(z) and Bn(z) are polynomials of degree m and n.
A suitable model of repair times is the Erlang-K distribution
EK ,θ (u) = 1 − e−θu ∑K−1

k=0
(θu)k
k! , K ≥ 1, being well-known in

reliability theory, e.g. [2]. Initially, let R(·) = eµ and Rs(·) be
arbitrary with finite mean. Eq. (2.1) yields Eeiτ r = iµ(τ + iµ)−1.
Invoking the Residue Theorem, e.g. [1,page 468], reveals that

lim
w→0
w∈C+

1
2π i

∫
Γ

φ(τ , z)
dτ

τ − w
=

1
z + µ+ λ+ λs(1 − Ee−(z+µ)rs )

,

(5.1)

whereas

1
2π i

∫
Γ

φ(τ , z)
dτ

τ − iz
=

µ

µ+ z
1

z + µ+ λ+ λs(1 − Ee−(z+µ)rs )
.

(5.2)

Taking Eqs. (5.1)–(5.2) into account yields the relation

ψ∗

C (z) =
µ

µ+ z
p∗

C (z). (5.3)

Combining Eqs (4.4), (5.1), Eq. (5.3) and the definition of Z∗(z)
yields

2λp∗

A(z) = p∗

C (z)(z +µ+λ(1−
µ

µ+ z
)+λs(1− Ee−(z+µ)rs )), (5.4)

whereas Eq. (3.2) entails that

(z + λs(1 − Ee−zrs ))p∗

A(z) + p∗

C (z)(z + λ(1 −
µ

µ+ z
)

+ λs(1 − Ee−zrs )) = 1. (5.5)

Having determined p∗

A(z) and p∗

C (z) from Eqs. (5.4)–(5.5), we
finally obtain A∗(z). As a numerical example, we focus on the
following particular cases:

Case 1: λ = 0.1;µ = 2; λs = 0.5;µs = 3.
Let Rs(·) = E2,µs (·). Note that Ee−zrs = µ2

s /(z + µs)2 =

9/(z + 3)2, whereas Ee−(z+µ)rs = 9/(z + 5)2. Solving the pair of
Eqs. (5.4), (5.5) and recalling that A∗(z) = p∗

A(z) + p∗

C (z), yields

A∗(z) =
N(z)
zD(z)

, Re z > 0,

where

N(z) =1252.8 + 2444.1z + 1937.8z2 + 798.3z3 + 179.8z4

+ 21z5 + z6,

whereas

D(z) =1516.5 + 2857.8z + 2170.43z2 + 857.02z3 + 186.62z4

+ 21.3z5 + z6.

The roots of D(z) = 0 are

z1 = −5.30027 − 1.24164i; z2 = z̄1; z3 = −3.24797 − 1.20131i,
z4 = z̄3, z5 = −2.48942, z6 = −1.71411.
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Fig. 5.1. Graph of A(t), 0 ≤ t ≤ 4. Case 1:solid curve, Case 2:dotted curve.

Fig. 5.2. Graph of A(t), 0 ≤ t ≤ 4, λs ∈ {0.2; 0.4; 0.7; 1; 2; 5}.

Clearly, A(t) is continuous on (0,∞) and of bounded variation on
[0,∞). Hence, by the Inversion Theorem

A(t) = lim
T→∞

1
2π i

∫ iT+δ

−iT+δ

eztN(z)

z
∏6

k=1(z − zk)
dz, δ > 0, t > 0.

Applying the Residue Theorem for Laplace transforms yields

A(t) =0.81 − 0.07e−2.48t
− 0.04e−1.71t

− 0.04e−5.30t (cos 1.24t

+ sin 1.24t) + 2e−3.24t (0.17 cos 1.20t + 0.14 sin 1.20t).

Case 2. λ = 0.1;µ = 1; λs = 0.5;µs = 3.
In similar way we obtain
A(t) = 0.75−0.04e−1.37t

−0.01e−0.83t
−0.04e−4.29t (cos 0.01t+

sin 0.01) + 2e−3.24t (0.17 cos 1.20t + 0.15 sin 1.20t).

Fig. 5.1 shows the graphs of A(t), 0 ≤ t ≤ 4. Case 1 : solid
curve, Case 2 : dashed curve. Finally, we visualize the impact of
the safety device on the availability of the S-system by varying
the failure rate λs. Fig. 5.2 shows the graph of A(t), 0 ≤ t ≤ 4 for
λs ∈ {0.2; 0.4; 0.7; 1; 2; 5}, λ = 0.1, µ = 1, µs = 3.
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Appendix

Let α(τ ) be L-continuous on R and infinity. In addition, let

L+(u) := lim
w→u
w∈C+

L(w), L−(u) := lim
w→u
w∈C−

L(w), u ∈ R,

where

L(w) :=
1

2π i

∫
Γ

α(τ )
dτ
τ − ω

, ω ∈ C.

We have

L+(u) =
1
2
α(u) + L(u), L−(u) = −

1
2
α(u) + L(u).

Hence, for u ∈ R

L+(u) − L−(u) = α(u), (A.1)

L+(u) + L−(u)
2

= L(u).

Eq. (A.1) is a Sokhotski–Plemelj boundary value problem (on the
real line in our case). The intricate problem is to find a section-
ally function L(w), w ∈ C having limits L+(u),L−(u) satisfying
Eq. (A.1). See [4] for further details and references to relevant
applications.
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