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Abstract Segmentation of ultrasound (US) images of breast

cancer is one of the most challenging problems of modern

medical image processing. A number of popular codes for

US segmentation are based on the active contours (snakes)

and on a variety of modifications of gradient vector flow. The

snakes have been used to locate objects in various applica-

tions of medical images. However, the main difficulty in

applying the method is initialization. Therefore, we suggest a

new method for automatic initialization of active contours

based on phase portrait analysis (PPA) of the underlying

vector field and a sequential initialization of trial multiple

snakes. The PPA makes it possible to exclude the noise and

artifacts and properly initialize the multiple snakes. In turn,

the trial snakes allow us to differentiate between the seeds

initialized inside and outside the desired object. While pre-

ceding methods require the manual selection of at least one

seed point inside the object or rely on the particular distri-

bution of the gray levels, the proposed method is fully

automatic and robust to the noise, as can be seen from the

tests with synthetic and real images.

Keywords Active contours � Phase portrait analysis �
Automatic initialization

1 Introduction

Many segmentation methods have been developed for

ultrasound (US) images of breast cancer. Numerous

reviews (e.g., 1 [1, 2]) present methods to treat seg-

mentation of medical images as a general image pro-

cessing problem, while others use a priori information

relevant to the specific type of the images. Conven-

tional segmentation methods include thresholding [3–

7], neural networks [8–15], mode-based methods (such

as expectation–maximization) [16, 17], clustering [18,

19], region growing [20], deformable active contours

(snakes) [3, 21–25] and level set methods [26]. The

segmentation is usually followed by feature extraction

to distinguish malignant and benign masses. The fea-

tures include shape of the mass, posterior acoustic

behavior, radial gradient or margin, variance/autocor-

relation, contrast, distribution of the distortions and

many others [27]. Survey [28] reports 17 texture fea-

tures, 17 morphological features, 10 model-based fea-

tures and 13 descriptor features.

Recent advances in the US segmentation include fusion

of the medical images [29], using graphic processing units

[30], multi-atlas segmentation [31], incorporating priors

[32] using the AI methods combined with snakes [31, 33–

35], advanced level set methods [36–43] and the multi-

scale approach [44]. The US image analysis is a part of the

computer-assisted diagnostic systems. The entire evalua-

tion includes mammography (usually the primary step),

thermography [45, 46], Doppler imagery [47, 48] and

elasticity analysis [49]. Such evaluation along with the

computerized cytology [50, 51] constitutes a basic archi-

tecture toward the ultimate goal of fully automatic clinical

decision support systems for detection and grading of the

breast cancer [52].
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Active contours (snakes) originally introduced by Kass

et al. [53] are one of the most popular techniques for

extraction of complex objects from digital images. Since

the seminal work of Kass and colleagues, active contours

have been applied to many object extraction tasks with

differing degrees of success (e.g., survey [54]). Further

improvements process the underlying vector field which

moves the snake toward the required boundary, such as the

gradient vector flow (GVF) [55] and the generalized gra-

dient vector flow field (GGVF) [56]. Some variations of

these ideas are the multi-directional GGVF [57] and the

nonlinear diffusion model [58]. Recent modifications are

the convolution vector flow [59], Poisson gradient vector

field [60, 61], segmented external force field [62], dynamic

directional gradient vector flow [63], normal gradient

vector field [64], priory directional information vector flow

[65], adaptive diffusion flow [66], multi-feature gradient

vector flow [67] and divergence gradient vector flow [68].

A competing approach called the level set method

(LSM) [69] is based on the ideas proposed by Osher and

Sethian [70] to use a model of propagating liquid interfaces

with curvature-dependent speeds. The LSM combined with

the contour energy minimization resulted in a variety of the

so-called geodesic deformable models [71–74]. However,

the LSM makes it difficult to impose arbitrary geometric or

topological constraints on the evolving contour via the

higher-dimensional hypersurface. Besides, the level set

models may generate shapes having inconsistent topology

with respect to the actual object, when applied to noisy

images characterized by large boundary gaps [75] and non-

closed curves [62]. Besides, the LSM is computationally

expensive since it requires to propagate a 2D object (the

level set surface) in the 3D space, whereas the active

contour methods evolve a 1D object (the closed contour) in

the 2D space.

Numerous research papers apply the active contours to

medical images. The examples are multi-directional

snakes: skin cancer images [57], topology-adaptive snakes:

MR brain images and CT scans [76], gravitational force

snakes: a variety of medical and non-medical images [77],

narrow-band snakes: MRI and CT scan images of lungs

[78], distance snake [79], GVF snake, balloon snake [80],

‘‘area and length’’ snakes [72], geodesic snakes [71],

constrained snakes [73] and level set method: MRI, CT and

US images of brain, liver and kidney [74], region-compe-

tition snakes (originally [81]): CT scan slices of arteries

[82], sectored snakes [83]: abdominal CT scans [84],

parametric snakes: US of breast masses [85], 3D snakes:

US breast cancer images [22, 85], GVF snakes with an

edge map preprocessing: US of the kidney tumors [86],

GVF snakes combined with the region growing and the

median filter: US breast tumors [87], sketch snakes [22]:

chest X-ray images [22], combination of snakes and active

shape models: US of the human heart [88], the early vision

and the discrete snakes: the US images [89], multi-reso-

lution snake: echographic and echobrachial images [90],

GGVF snakes combined with a continuous force field

analysis: breast tumors in the US images [91] and geodesic

snakes and coupled geometric snakes: female pelvic organs

in the MRI images [92–94].

The success of such segmentations critically depends on

preprocessing and initial positions (initialization) of the

snakes. Noise and small objects may attract the snake to a

local energy minimum, which does not correspond to the

actual boundary. Therefore, to reach the desired boundary,

the initial contour should be initialized close to the object.

The problem can be partially solved by initializing multiple

snakes, which can split, merge and collapse (disappear).

Moreover, the higher-order active contours (quadratic

snakes) proposed by Rochery et al. [95] are able to ‘‘see’’

each other, so that they do not intersect if not required.

However, such strategies still require proper initialization.

It is often critical to differentiate the snakes initialized

inside and outside the object. Obviously, if one can do it for

every position in the image, it means that the object has

already been segmented. However, the algorithm should

only do it for some points for which such differentiation is

possible. One of the possible solutions is based on growing

snakes initialized around false objects and false edges so

that they do not get attracted to them during their evolution

(Fig. 1c).

Unfortunately, up to now only a few papers deal with

the snake initialization. For instance, [62] segments the

external force field, to divide the image domain into dis-

joint regions. The snakes can be individually initialized

within each of the enclosures and moved to the targeted

object boundary within it, avoiding being attracted by other

objects. [96, 97] proposed a quasi-automated initialization

method requiring only one user-defined point. The method

employs the centers of divergence [98] combined with a

tracing procedure to create a ‘‘skeleton’’ of the object,

consisting of the points of strong and weak divergence. A

contour constructed around the skeleton is usually inside

the object and can be used as the initial seed. However, the

method is not fully automated and still requires at least one

user-defined point inside the object. Moreover, it can be

shown that the skeleton can eventually grow outside the

boundary of the object. In this case, the initialized snake

evolves to false boundaries. Besides, [96] does not evaluate

the performance of the method on a series of images and

does not estimate an impact of the noise. Poisson gradient

vector flow [61] is applied to automatic segmentations of

positron emission tomography images of the liver. The

initial contour is selected by Canny edge detection from the

candidate curves selected by a genetic algorithm. The

proposed initialization is not always reliable and may not
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work for multiple objects. However, the important idea of

running trial initializations and getting some additional

information from them has been introduced. Recently,

these techniques have been applied to automatic extraction

of face contours in images and video [99]. A similar idea of

a ‘‘cascade of the active contours’’ has been proposed for

the detection of the synovial boundaries in US images

[100].

As far as the US images are concerned, the majority of

the initialization methods are based on the analysis of the

gray levels and textures, to locate the most probable seed

points [21, 101, 102]. Saliency and feature maps, such as

texture maps, have been recently applied for contour ini-

tialization in [103]. A hybrid vector field, combining the

structure of the gradient vector flow and the texture, has

been proposed in [104]. A ‘‘degraded’’ (simplified) Chan–

Vese model [105] generates an initial contour in the

framework of region-based segmentation. Several papers

use priori knowledge about the typical position of a human

organ in the US image (see, for instance, [106]). However,

all the above methods depend on the particular features of

the image and may not work if a strong noise is present.

Besides, they do not use the advantages of multiple trial

snakes. Therefore, this paper proposes a new algorithm for

automatic initialization, which combines the idea of vector

field analysis [98] and multiple competing active contours

[61]. Our vector field analysis performed by the phase

portrait method has been used in a variety of image pro-

cessing applications, e.g., [107–113]. However, the use of

PPA in the framework of initialization algorithms has been

overlooked. Our proposed iterative procedure resolves the

most common initialization problems. First, it decides

whether the seed snake is inside or outside the object.

Second, the procedure makes it possible to efficiently

detect and avoid false boundaries and artifacts. The pro-

posed algorithm has been tested against the initialization

method [96, 97] on a series of synthetic and real ultrasound

images of breast cancer. The numerical experiments show

significantly improved reliability and accuracy. Besides,

the proposed PPA has been tested against the adaptive

diffusion flow [66], a recent version of the level set method

[37, 38] and an advanced fuzzy C-mean clustering [39, 40]

with the seeds initialized manually inside the cancer tumor.

The numerical experiments demonstrate that proposed

technique outperforms the above algorithms even though

we use the most basic GGVF (without any recent

improvements).

2 Generalized gradient vector flow snakes

An active contour or snake is a parametric curve X sð Þ ¼
x sð Þ; y sð Þð Þ; s 2 0; 1½ � evolving inside the image domain, so

that it eventually attaches itself to the boundary of the

object of interest.

Derived from the corresponding energy functional [53],

the evolution of the snake is governed by Euler equations

given by

a
d2X

ds2
þ b

d4X

ds4
þrEext ¼ 0;

where the weighting parameters a and b control the snake’s

tension and rigidity and rEext is the generalized gradient

vector flow (GGVF) [56] defined as the equilibrium solu-

tion of the following system of partial derivative equations

oV

ot
� g rfj jð Þr2V � h rfj jð Þðrf � VÞ ¼ 0;

where f is the image gray level, g rfj jð Þ ¼ e� rfj j=Kð Þ;
h rfj jð Þ ¼ 1 � g rfj jð Þ, and K is a calibration parameter.

3 Phase portrait analysis

The idea to use the phase portrait for oriented patterns

[111] in image processing has been used in fingerprint

identification [109, 113], texture analysis [112] and satel-

lite imagery [107, 108]. In particular, phase portrait tech-

niques have been applied to detect architectural distortions

in mammogram breast images [114]. However, to the best

Fig. 1 Elimination of the external stars: a S4 gets blocked, b S1; S2; S3 are eliminated, c S4 eliminated
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of our knowledge, PPA for initialization of the GGVF

snakes has been overlooked. PPA is based on the analysis

of the critical points of the vector flow assumed to change

linearly in the neighborhood of the critical point as follows,

v ¼ Ap, where p is the Cartesian coordinate and A is the

corresponding matrix. The flow patterns characterized by

the eigenvalues of matrix A are shown in Table 1, where

k1; k2 are the eigenvalues, Ri ¼ Rek1, and Ii ¼ Imki [115,

116]. The proposed vector field classifier employs a con-

tinuous formulation given by

Cðk1; k2Þ ¼
minð k1j j; k2j jÞ
maxð k1j j; k2j jÞ

signðk1k2Þ þ 1

2
; if k1 [ d; k2 [ d;

0; otherwise:

8
<

:

ð1Þ

where d is a threshold to exclude ill-conditioned matrices

characterized by small eigenvalues. The term
minð k1j j; k2j jÞ

maxð k1j j; k2j jÞ
includes converging/diverging configurations, i.e., attract-

ing and repelling stars (see Table 1). The term
signðk1k2Þþ1

2

excludes the saddle points. All other patterns get a 0 score.

The converging/diverging configurations are differentiated

by the sign of the eigenvalues. Since GGVF eventually

eliminates small groups of noisy pixels, the seeds must be

initialized around large or medium size stars and nodes.

Therefore, the PPA is combined with a growing window as

follows: If Cðk1; k2Þk [D
� �

, k1 [ 0; k2 [ 0; for every

k ¼ k1; . . .; k2, where k is the size of the growing window

and D is the suitable threshold to detect the large config-

uration, then the window is a candidate to be the seed.

The seed windows are then covered by the initial snakes

in order to exclude the false boundaries and artifacts.

4 The algorithm

The algorithm is based on the idea that if we detect all the

converging and diverging stars inside the object and run the

expanding snakes from them, they will eventually merge

and attach themselves to the boundary (in case of attracting

star, the vector field must be inverted). Let ND and NC be

the number of the diverging and converging stars, respec-

tively. The first stage of the algorithm is then given by the

following pseudo-code:

Table 1 PPA: attracting and repelling stars

Pattern Eigenvalues Illustration

Saddle point R1[ 0, R2\ 0 I1 = I2 = 0

Repelling node R1 = R2[ 0 I1 = I2 = 0

Attracting node R1 = R2\ 0 I1 = I2 = 0

Repelling star R1 = R2[ 0 I1 = I2 = 0

Attracting star R1 = R2\ 0 I1 = I2 = 0
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The algorithm is illustrated in Figs. 1 and 2. The first

stage eliminates the seeds positioned outside the object. If a

snake reaches the image boundary, the algorithm smooth-

ens the vector field inside the contour to give the way to the

snakes, which would have been blocked otherwise. The

iterative procedure eventually excludes every external star

(converging or diverging) leaving the internal stars intact

(see Fig. 1). When the vector field gets inverted, e.g.,

Vinverted ¼ �V , the converging snakes become diverging,

so that they are grown on Vinverted until they meet vectors in

the opposite direction. When they stop, they get offset and

then are grown further on the original vector field.

Note that at the first stage, merging is not allowed: If the

external and internal snakes merge, the tumor becomes

undetectable (see Fig. 1a–c). However, when the external

snakes disappear, merging becomes the basic mechanism

of the proposed initialization. The algorithm runs on the

original vector field where the converging snakes are

considered ‘‘sleeping,’’ whereas the diverging snakes are

growing and merging. Snakes S1, S2 merge whenever

distH1
ðS1; S2Þ\d, where d is the merging threshold and

distH1
is the Hausdorff distance (see the definition in

Sect. 5). It is often the case that a growing snake merges

with the ‘‘sleeping’’ snake and the resulting contour keeps

growing (Fig. 2a). However, the algorithm does not guar-

antee that. Therefore, the converging snakes, which have

not been ‘‘woken up,’’ are offset by several pixels to pick

up the repelling component of the vector field (Fig. 2b).

Note that for the converging configuration the small offset

never intersects the boundary, since there is always a layer

of vectors toward the boundary (Fig. 2a). The merging

procedure generates a joint growing contour when the

snakes are at the distance less or equal to d (Fig. 2c) or

when the snakes intersect due to initialization or due to

excessive numerical step (overstepping). The algorithm

includes detection of intersections and performs tracing to

generate a joint contour, which becomes a new snake

(Fig. 2d). The topological changes follow conventional

split-and-merge procedures [76, 117, 118]. Besides, our

split-and-merge algorithm has been successfully tested on

complex-shaped objects in [119].

Note that expanding from the inside of the object is not

mandatory. In some cases, it is acceptable to clean up all

the converging and diverging configurations outside the

object and initialize contracting snake from the image

boundary. However, the tumor generally has some homo-

geneity properties. Second, even though the smoothing

process erases the attracting and repelling stars, the

resulting vector field outside the tumor still could be

chaotic and include false boundaries.

5 Numerical experiments

Our numerical experiments have been performed on 40

synthetic images, subjected to various levels of noise, and

on 15 real US images of breast cancer. The method has

been compared with a quasi-automatic initialization [96,

97] based on detection of the centers of the weak and

strong divergences. A special tracing procedure connects

them, generating some kind of skeleton of the object. The

skeleton snake requires one manually defined point inside

the object (not fully automatic), whereas our procedure

runs in an entirely automatic mode. Moreover, the skeleton

snake has not been properly tested against a series of real

images. The impact of the noise was not evaluated, and the

accuracy of the segmentation has not been estimated. In

this section, we show that skeleton initialization is sensitive

to the noise and PPA outperforms this method in terms of

the number of correct initializations and the accuracy.

We also compare the proposed initialization method

equipped only with a basic version of GGVF with the

adaptive diffusion flow (ADF) [66], a recent version of the

level set method (LSM) [37, 38] and an advanced version

of the fuzzy C-mean clustering (FCM) [39, 40]. The pro-

posed method outperforms the above algorithms even

though we use the most basic GGVF (without any recent

improvements).

Fig. 2 a Snake growing from a converging configuration ‘‘wakes up’’ a ‘‘sleeping’’ snake, b the offset snake picks up the opposite direction of

the vector field, c merging of the growing contours, d merging of the intersecting contours
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The accuracy is measured by the Hausdorff distance

between the resulting contour and the ground truth, by the

percentage of true positives (TP) as well as by the

specificity (SPE), sensitivity (SEN) and accuracy (ACC).

To compare the method with the skeleton snakes, we also

use a binary measure counting the number of times when

the initial snakes were correctly initialized inside the

tumor. This allows to evaluate the true accuracy since an

incorrect initialization can substantially decrease the

average accuracy. On the other hand, even a correct ini-

tialization does not mean a good accuracy. Figure 3a–e is

an introductory example showing the skeleton initializa-

tion getting ‘‘distracted’’ by the inside converging con-

figurations such a noisy ‘‘star’’ located nearby the

boundary (cf. correct segmentation by the PPA in Fig. 3f–

k). Furthermore, even when the initialization is correct,

i.e., positioned inside the tumor, it does not guarantee that

the algorithm reaches the boundary. Figure 4 shows that

the ADF, LSM and FCM may fail if the seed is initialized

in a noisy area.

Finally, Fig. 5 shows an example from Tauber et al.

[96]. PPA and the skeleton segmentations are practically

identical; however, the skeleton snake requires one man-

ually defined internal point, whereas PPA performs in an

entirely automatic mode.

5.1 Example 1: synthetic images

Forty (300 9 200) images of synthetic tumors were gen-

erated by using oval-like shapes subjected to elastic

deformations [120] and a trigonometric boundary noise

Fig. 3 Skeleton vs. PPA initialization, introductory example: a a

synthetic tumor, b the ground truth, c skeleton snake: strong and weak

diverging points, d skeleton initialization, e skeleton snake: final

contour, f GGVF and the corresponding stars, g PPA initialization,

h PPA: final contour, i ADF and the corresponding stars, j ADF/PPA

initialization, k ADF/PPA snake: final contour
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(Fig. 6). The images were degraded by the impulse noise

and the additive speckle noise (30–20 dB). The images are

characterized by a low contrast c ¼ Gout�Gin

Gout
¼ 0:51, where

Gin;Gout is the average gray level inside and outside the

tumor. Figure 6 shows an example of a typical synthetic

image subjected to the speckle noise.

Fig. 4 Introductory example PPA vs. ADF, LSM and FCM: a noisy

star, b ADF, manual initialization, c ADF, manual initialization: final

contour, d multiple noisy star, e LSM manual initialization, f LSM:

the final contour, g FCM clustering, h FCM: final contour, i, j PPA

solution for the multiple noisy star

Fig. 5 a US image from [96], b the vector field, c PPA segmentation, d Tauber’s segmentation
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Table 2 compares the competing methods in terms

of the TP and a Hausdorff distance given by

distH1
ðX; YÞ ¼ maxfmax

a2X
min
b2Y

jja� bjj;max
b2Y

min
a2X

jja� bjjÞ,
where || || denotes the Euclidean distance, X the ground-

truth contour, and Y the resulting contour.

The averaged Hausdorff distance H2 is obtained from H1

by replacing the internal maximum by averaging. Finally,

the relative Hausdorff distance is given by distH3
ðX; YÞ ¼

distH1
ðX;YÞ

LY
n, where LY is the length of the true contour, and

n ¼ 1000 is a normalizing coefficient. The image is con-

sidered to be correctly segmented if distH1
ðX; YÞ� 15.

However, the average accuracy was evaluated for all cases

when the snakes were correctly initialized inside the tumor.

The FCM runs with 3 clusters corresponding to the tumor,

dark background and white shadow areas. The initial

centers of the clusters are the average gray levels in these

clusters. Since the FCM is a region-based method, the final

contour for evaluating H1 was generated by the LSM [39,

40]. The initial contours for ADF and LSM were generated

manually in the noisy areas of the image. The area of the

initial contour was about 60 % of the total area of the

tumor. Clearly, the PPA has an overwhelming advantage

with regard to skeleton snakes practically for every noise

Fig. 6 Synthetic tumors

subjected to impulse and

speckle noise

Table 2 PPA versus benchmark methods

Noise, dB Model Correctly initialized

inside object, %

images

Correctly

segmented,

% images

Accuracy

Contour-based evaluation Region-based evaluation

H1 H2 H3 TP SEN SPE ACC

0 PPA ? GGVF 100 100 2.10 0.73 1.67 99.95 99.80 99.06 99.33

Skeleton ? GGVF 80 40 63.92 23.09 26.57 80.16 82.78 99.15 91.50

PPA ? ADF 100 100 2.13 0.74 1.57 100.00 99.74 99.11 99.33

LSM Manual 80 12.46 5.49 3.32 79.91 81.25 99.59 94.97

FCM Manual 80 12.46 5.47 27.71 79.96 80.80 99.93 99.03

ADF, 60 % Manual 10 88.91 29.85 36.94 54.73 64.77 99.61 87.68

30 PPA ? GGVF 90 90 4.15 1.46 2.60 98.12 99.32 99.54 99.33

Skeleton ? GGVF 60 30 103.64 57.18 61.31 68.68 66.92 99.65 90.38

PPA ? ADF 90 90 3.79 1.57 3.16 94.84 98.28 99.71 99.23

LSM Manual 80 14.08 6.14 4.09 78.78 80.40 99.96 94.88

FCM Manual 80 12.93 5.53 27.71 79.82 80.86 99.88 94.94

ADF, 60 % Manual 0 90.44 29.41 36.71 50.79 63.85 99.89 87.63

26 PPA ? GGVF 80 80 4.53 1.67 3.23 95.37 98.56 99.65 99.24

Skeleton ? GGVF 60 10 104.68 69.82 73.86 52.91 60.03 99.66 85.93

PPA ? ADF 80 80 4.66 1.86 3.62 87.53 97.47 99.72 98.94

LSM Manual 80 15.47 6.33 4.30 77.01 79.91 99.95 94.69

FCM ? LSM Manual 80 13.31 5.52 27.43 79.38 80.57 99.82 94.90

ADF, 60 % Manual 0 94.11 34.35 42.75 44.26 59.93 99.88 86.18

21 PPA ? GGVF 80 70 9.42 1.98 3.56 88.00 97.55 99.55 98.73

Skeleton ? GGVF 60 10 141.75 136.78 138.19 47.70 52.91 99.59 82.91

PPA ? ADF 80 70 10.56 2.08 3.51 83.46 96.78 99.27 98.34

LSM Manual 70 19.81 6.67 4.60 71.38 79.10 99.88 94.33

FCM Manual 80 14.15 5.73 27.92 77.75 79.94 99.73 94.60

ADF, 60 % Manual 0 90.65 38.11 48.89 37.26 52.34 99.84 83.16

The bold numbers indicate the best accuracy in each category
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level. Even in the absence of the speckle noise (but with the

impulse noise present), only 80 % of the skeleton snakes

are correctly initialized and only half of that 80 % reaches

the boundary. As far as the overall performance is con-

cerned, the increasing noise level leads to a further

decrease in the accuracy of the skeleton snakes. For

instance, in case of 21 dB, only 10 % of the skeleton

snakes are successful. The performance of the ADF snake

with manual initialization is catastrophic with 0 correct

segmentations at 21 db; however, the LSM and FCM are

comparable in terms of the number of correctly segmented

images; however, PPA is consistently more accurate.

Besides, the forthcoming Example 2 shows that PPA

overperforms the LSM and FCM in terms of the number of

correctly segmented tumors in case of real US images.

Finally, combining PPA with the ADF does not lead to

a substantial improvement. Moreover, in some cases,

PPA/GGVF produces more accurate segmentation. This is

because the standard deviation r of a Gaussian smoother

required for the ADF has not been tuned. We do not

adjust it deliberately; otherwise, it would not be fair with

regard to PPA/GGVF which does not use the Gaussian

smoothing at all. We consider r ¼ 0:5 as recommended in

[66].

5.2 Example 2: ultrasound images of the breast

cancer

This section tests the initialization using the PPA snakes

against the skeleton snakes on a series of 15 US images

of the breast cancer. The images have been obtained from

Philips iU22 ultrasound machine available at Department

of Radiology, Thammasat University Hospital. The ROIs

have been outlined manually. The ground-truth contours

have been hand-drawn by the leading radiologists with

Department of Radiology, Faculty of Medicine of

Thammasat University. The resolution of the images

ranges from 200 9 200 to 300 9 400.

Examples which demonstrate the advantages of the

PPA snakes applied to the real US images are shown in

Figs. 7 and 8. Clearly, the skeleton snakes, ADF, LSM

and FCM fail when the tumor includes a large non-ho-

mogeneous area characterized by the noise and/or

shadows. In this case, the resulting contour may be

attracted to false boundaries, whereas PPA avoids the

false boundaries using multiple, properly initialized

snakes.

Table 3 compares the performance of PPA with the

skeleton snakes as well as with LSM, FCM and ADF. The

initial contour for ADF and LSM was generated manually

in the noisy areas of the image. Clearly, the PPA outper-

forms the skeleton snakes due to the ability to detect the

internal and external stars, avoidance of the noise and the

use of multiple seeds, whereas the skeleton seed often

grows outside the object or creates an incorrect skeleton

which jeopardizes the entire initialization. Furthermore,

FCM and ADF are apparent losers (60 and 46 %, respec-

tively). The performance of LSM is somewhat acceptable;

however, it segments correctly only 73 % of the images,

whereas PPA generates 93 % correct segmentations.

Finally, PPA scores the best in 8 categories from 9 (bold-

face numbers in Table 3).

Fig. 7 a US image, b ground truth, c skeleton initialization,

d skeleton final contour, e ADF manual initialization, f ADF final

contour, g GGVF/PPA stars before elimination, h GGVF stars after

elimination, i PPA/GGVF initialization, j PPA/GGVF final contour,

k PPA/ADF initialization, l PPA/ADF final contour
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6 Limitations of the method

The algorithm has been designed and implemented for the

case of a single object (a malignant or benign tumor in the US

images). The case of multiple objects needs further modifi-

cations, which lie out of the scope of the paper. Furthermore,

in the case of very noisy images characterized by a low

contrast, the trial external snake may get stacked inside the

image and may not reach the boundary at all. A possible

extension is a combination of the proposed multiple growing

snakes initialized inside the US image and sequence of

contracting balloon snakes [80] initialized at the boundary of

the image characterized by a varying balloon force.

7 Conclusions

The proposed automatic procedure for initialization of

snakes for segmentation of the US breast cancer images

(PPA) shows an excellent performance as applied to

synthetic as well as to real US images and outperforms a

recently proposed quasi-automatic method (skeleton

snakes). The proposed initialization method equipped with

the most basic version of GGVF also outperforms the

adaptive diffusion flow, an advanced level set method and

a fuzzy C-mean clustering combined with the level set

method. The numerical experiments show that in many

cases, the benchmark algorithms do not reach the boundary

due to inappropriate initial positions of the seeds.
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